MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4266
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4263 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4264 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 4022 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  disjxiun  5163  f1un  6882  undomOLD  9126  strleun  17204  dprdss  20073  dprd2da  20086  ablfac1b  20114  tgcl  22997  innei  23154  hausnei2  23382  bwth  23439  fbssfi  23866  fbunfip  23898  fgcl  23907  blin2  24460  vtxdun  29517  vtxdginducedm1  29579  5oai  31693  mayetes3i  31761  mdsl0  32342  neibastop1  36325  ismblfin  37621  heibor1lem  37769  pl42lem2N  39937  pl42lem3N  39938  ntrk2imkb  43999  ssin0  44957  iscnrm3llem2  48630
  Copyright terms: Public domain W3C validator