MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4208
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4205 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4206 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3960 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3913  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931
This theorem is referenced by:  disjxiun  5104  f1un  6820  strleun  17127  dprdss  19961  dprd2da  19974  ablfac1b  20002  tgcl  22856  innei  23012  hausnei2  23240  bwth  23297  fbssfi  23724  fbunfip  23756  fgcl  23765  blin2  24317  vtxdun  29409  vtxdginducedm1  29471  5oai  31590  mayetes3i  31658  mdsl0  32239  neibastop1  36347  ismblfin  37655  heibor1lem  37803  pl42lem2N  39974  pl42lem3N  39975  ntrk2imkb  44026  ssin0  45049  iscnrm3llem2  48935
  Copyright terms: Public domain W3C validator