MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4194
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4191 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4192 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3944 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3897  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915
This theorem is referenced by:  disjxiun  5092  f1un  6790  strleun  17072  dprdss  19947  dprd2da  19960  ablfac1b  19988  tgcl  22887  innei  23043  hausnei2  23271  bwth  23328  fbssfi  23755  fbunfip  23787  fgcl  23796  blin2  24347  vtxdun  29464  vtxdginducedm1  29526  5oai  31645  mayetes3i  31713  mdsl0  32294  neibastop1  36426  ismblfin  37724  heibor1lem  37872  pl42lem2N  40102  pl42lem3N  40103  ntrk2imkb  44157  ssin0  45179  iscnrm3llem2  49077
  Copyright terms: Public domain W3C validator