MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4167
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4164 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4165 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3930 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  disjxiun  5067  undom  8800  strleun  16786  dprdss  19547  dprd2da  19560  ablfac1b  19588  tgcl  22027  innei  22184  hausnei2  22412  bwth  22469  fbssfi  22896  fbunfip  22928  fgcl  22937  blin2  23490  vtxdun  27751  vtxdginducedm1  27813  5oai  29924  mayetes3i  29992  mdsl0  30573  neibastop1  34475  ismblfin  35745  heibor1lem  35894  pl42lem2N  37921  pl42lem3N  37922  ntrk2imkb  41536  ssin0  42492  iscnrm3llem2  46132
  Copyright terms: Public domain W3C validator