MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4170
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4167 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4168 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3934 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  disjxiun  5071  f1un  6736  undomOLD  8847  strleun  16858  dprdss  19632  dprd2da  19645  ablfac1b  19673  tgcl  22119  innei  22276  hausnei2  22504  bwth  22561  fbssfi  22988  fbunfip  23020  fgcl  23029  blin2  23582  vtxdun  27848  vtxdginducedm1  27910  5oai  30023  mayetes3i  30091  mdsl0  30672  neibastop1  34548  ismblfin  35818  heibor1lem  35967  pl42lem2N  37994  pl42lem3N  37995  ntrk2imkb  41647  ssin0  42603  iscnrm3llem2  46244
  Copyright terms: Public domain W3C validator