| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4222 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | sslin 4223 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3977 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 |
| This theorem is referenced by: disjxiun 5121 f1un 6843 undomOLD 9079 strleun 17181 dprdss 20017 dprd2da 20030 ablfac1b 20058 tgcl 22912 innei 23068 hausnei2 23296 bwth 23353 fbssfi 23780 fbunfip 23812 fgcl 23821 blin2 24373 vtxdun 29466 vtxdginducedm1 29528 5oai 31647 mayetes3i 31715 mdsl0 32296 neibastop1 36382 ismblfin 37690 heibor1lem 37838 pl42lem2N 40004 pl42lem3N 40005 ntrk2imkb 44028 ssin0 45046 iscnrm3llem2 48891 |
| Copyright terms: Public domain | W3C validator |