Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4164 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | sslin 4165 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9ss 3930 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: disjxiun 5067 undom 8800 strleun 16786 dprdss 19547 dprd2da 19560 ablfac1b 19588 tgcl 22027 innei 22184 hausnei2 22412 bwth 22469 fbssfi 22896 fbunfip 22928 fgcl 22937 blin2 23490 vtxdun 27751 vtxdginducedm1 27813 5oai 29924 mayetes3i 29992 mdsl0 30573 neibastop1 34475 ismblfin 35745 heibor1lem 35894 pl42lem2N 37921 pl42lem3N 37922 ntrk2imkb 41536 ssin0 42492 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |