| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4195 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | sslin 4196 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3951 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: disjxiun 5092 f1un 6788 strleun 17086 dprdss 19928 dprd2da 19941 ablfac1b 19969 tgcl 22872 innei 23028 hausnei2 23256 bwth 23313 fbssfi 23740 fbunfip 23772 fgcl 23781 blin2 24333 vtxdun 29445 vtxdginducedm1 29507 5oai 31623 mayetes3i 31691 mdsl0 32272 neibastop1 36335 ismblfin 37643 heibor1lem 37791 pl42lem2N 39962 pl42lem3N 39963 ntrk2imkb 44013 ssin0 45036 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |