| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4192 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | sslin 4193 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3948 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: disjxiun 5088 f1un 6783 strleun 17068 dprdss 19944 dprd2da 19957 ablfac1b 19985 tgcl 22885 innei 23041 hausnei2 23269 bwth 23326 fbssfi 23753 fbunfip 23785 fgcl 23794 blin2 24345 vtxdun 29461 vtxdginducedm1 29523 5oai 31639 mayetes3i 31707 mdsl0 32288 neibastop1 36399 ismblfin 37707 heibor1lem 37855 pl42lem2N 40025 pl42lem3N 40026 ntrk2imkb 44076 ssin0 45098 iscnrm3llem2 48987 |
| Copyright terms: Public domain | W3C validator |