| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | sslin 4206 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
| 3 | 1, 2 | sylan9ss 3960 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: disjxiun 5104 f1un 6820 strleun 17127 dprdss 19961 dprd2da 19974 ablfac1b 20002 tgcl 22856 innei 23012 hausnei2 23240 bwth 23297 fbssfi 23724 fbunfip 23756 fgcl 23765 blin2 24317 vtxdun 29409 vtxdginducedm1 29471 5oai 31590 mayetes3i 31658 mdsl0 32239 neibastop1 36347 ismblfin 37655 heibor1lem 37803 pl42lem2N 39974 pl42lem3N 39975 ntrk2imkb 44026 ssin0 45049 iscnrm3llem2 48935 |
| Copyright terms: Public domain | W3C validator |