![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4130 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | sslin 4131 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9ss 3902 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∩ cin 3858 ⊆ wss 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-in 3866 df-ss 3874 |
This theorem is referenced by: disjxiun 4959 undom 8452 strleun 16420 dprdss 18868 dprd2da 18881 ablfac1b 18909 tgcl 21261 innei 21417 hausnei2 21645 bwth 21702 fbssfi 22129 fbunfip 22161 fgcl 22170 blin2 22722 vtxdun 26946 vtxdginducedm1 27008 5oai 29129 mayetes3i 29197 mdsl0 29778 neibastop1 33316 ismblfin 34464 heibor1lem 34619 pl42lem2N 36647 pl42lem3N 36648 ntrk2imkb 39872 ssin0 40856 |
Copyright terms: Public domain | W3C validator |