MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2in Structured version   Visualization version   GIF version

Theorem ss2in 4133
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 4130 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 sslin 4131 . 2 (𝐶𝐷 → (𝐵𝐶) ⊆ (𝐵𝐷))
31, 2sylan9ss 3902 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  cin 3858  wss 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-v 3439  df-in 3866  df-ss 3874
This theorem is referenced by:  disjxiun  4959  undom  8452  strleun  16420  dprdss  18868  dprd2da  18881  ablfac1b  18909  tgcl  21261  innei  21417  hausnei2  21645  bwth  21702  fbssfi  22129  fbunfip  22161  fgcl  22170  blin2  22722  vtxdun  26946  vtxdginducedm1  27008  5oai  29129  mayetes3i  29197  mdsl0  29778  neibastop1  33316  ismblfin  34464  heibor1lem  34619  pl42lem2N  36647  pl42lem3N  36648  ntrk2imkb  39872  ssin0  40856
  Copyright terms: Public domain W3C validator