Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2in | Structured version Visualization version GIF version |
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
ss2in | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4148 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | sslin 4149 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | |
3 | 1, 2 | sylan9ss 3914 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∩ cin 3865 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: disjxiun 5050 undom 8733 strleun 16710 dprdss 19416 dprd2da 19429 ablfac1b 19457 tgcl 21866 innei 22022 hausnei2 22250 bwth 22307 fbssfi 22734 fbunfip 22766 fgcl 22775 blin2 23327 vtxdun 27569 vtxdginducedm1 27631 5oai 29742 mayetes3i 29810 mdsl0 30391 neibastop1 34285 ismblfin 35555 heibor1lem 35704 pl42lem2N 37731 pl42lem3N 37732 ntrk2imkb 41324 ssin0 42276 iscnrm3llem2 45917 |
Copyright terms: Public domain | W3C validator |