Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resplit Structured version   Visualization version   GIF version

Theorem sge0resplit 41263
Description: Σ^ splits into two parts, when it's a real number. This is a special case of sge0split 41266. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resplit.a (𝜑𝐴𝑉)
sge0resplit.b (𝜑𝐵𝑊)
sge0resplit.u 𝑈 = (𝐴𝐵)
sge0resplit.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0resplit.f (𝜑𝐹:𝑈⟶(0[,]+∞))
sge0resplit.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0resplit (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))

Proof of Theorem sge0resplit
Dummy variables 𝑎 𝑏 𝑟 𝑢 𝑣 𝑥 𝑦 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0resplit.a . . . . . . 7 (𝜑𝐴𝑉)
2 sge0resplit.f . . . . . . . 8 (𝜑𝐹:𝑈⟶(0[,]+∞))
3 ssun1 3940 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
4 sge0resplit.u . . . . . . . . . . 11 𝑈 = (𝐴𝐵)
54eqcomi 2774 . . . . . . . . . 10 (𝐴𝐵) = 𝑈
63, 5sseqtri 3799 . . . . . . . . 9 𝐴𝑈
76a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
82, 7fssresd 6255 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
94a1i 11 . . . . . . . . 9 (𝜑𝑈 = (𝐴𝐵))
10 sge0resplit.b . . . . . . . . . 10 (𝜑𝐵𝑊)
11 unexg 7159 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
121, 10, 11syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ V)
139, 12eqeltrd 2844 . . . . . . . 8 (𝜑𝑈 ∈ V)
14 sge0resplit.re . . . . . . . 8 (𝜑 → (Σ^𝐹) ∈ ℝ)
1513, 2, 14sge0ssre 41254 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ)
161, 8, 15sge0supre 41246 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ))
1716, 15eqeltrrd 2845 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ)
18 ssun2 3941 . . . . . . . . . 10 𝐵 ⊆ (𝐴𝐵)
1918, 5sseqtri 3799 . . . . . . . . 9 𝐵𝑈
2019a1i 11 . . . . . . . 8 (𝜑𝐵𝑈)
212, 20fssresd 6255 . . . . . . 7 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
2213, 2, 14sge0ssre 41254 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ)
2310, 21, 22sge0supre 41246 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ))
2423, 22eqeltrrd 2845 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ)
25 rexadd 12268 . . . . 5 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ ∧ sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2617, 24, 25syl2anc 579 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2713, 2, 14sge0rern 41245 . . . . . . . 8 (𝜑 → ¬ +∞ ∈ ran 𝐹)
28 nelrnres 40024 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐴))
2927, 28syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐴))
308, 29fge0iccico 41227 . . . . . 6 (𝜑 → (𝐹𝐴):𝐴⟶(0[,)+∞))
3130sge0rnre 41221 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ)
32 sge0rnn0 41225 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅
3332a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅)
341, 30sge0reval 41229 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ))
3534eqcomd 2771 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
3635, 15eqeltrd 2844 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ)
37 supxrre3 40182 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3831, 33, 37syl2anc 579 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3936, 38mpbid 223 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤)
40 nelrnres 40024 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐵))
4127, 40syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐵))
4221, 41fge0iccico 41227 . . . . . 6 (𝜑 → (𝐹𝐵):𝐵⟶(0[,)+∞))
4342sge0rnre 41221 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ)
44 sge0rnn0 41225 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅
4544a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅)
4610, 42sge0reval 41229 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ))
4746eqcomd 2771 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
4847, 22eqeltrd 2844 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ)
49 supxrre3 40182 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5043, 45, 49syl2anc 579 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5148, 50mpbid 223 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤)
52 eqid 2765 . . . . 5 {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}
5331, 33, 39, 43, 45, 51, 52supadd 11247 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ))
54 simpl 474 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝜑)
55 vex 3353 . . . . . . . . . . . . 13 𝑟 ∈ V
56 eqeq1 2769 . . . . . . . . . . . . . . 15 (𝑧 = 𝑟 → (𝑧 = (𝑣 + 𝑢) ↔ 𝑟 = (𝑣 + 𝑢)))
5756rexbidv 3199 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5857rexbidv 3199 . . . . . . . . . . . . 13 (𝑧 = 𝑟 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5955, 58elab 3507 . . . . . . . . . . . 12 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6059biimpi 207 . . . . . . . . . . 11 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6160adantl 473 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
62 simpl 474 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → 𝜑)
63 vex 3353 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
64 sumeq1 14707 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6564cbvmptv 4911 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6665elrnmpt 5543 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦)))
6763, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6867biimpi 207 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6968adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
70 vex 3353 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
71 sumeq1 14707 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7271cbvmptv 4911 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7372elrnmpt 5543 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ V → (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7470, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7574biimpi 207 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7675adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7769, 76jca 507 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
78 reeanv 3254 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) ↔ (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7977, 78sylibr 225 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
8079adantl 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
81 eqid 2765 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
82 elinel1 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
83 elpwi 4327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
84 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐴𝑎𝐴)
8584, 6syl6ss 3775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝐴𝑎𝑈)
8683, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ 𝒫 𝐴𝑎𝑈)
8782, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝑈)
8887adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎𝑈)
89 elinel1 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝐵)
90 elpwi 4327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
91 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐵𝑏𝐵)
9291, 19syl6ss 3775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝐵𝑏𝑈)
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ 𝒫 𝐵𝑏𝑈)
9489, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝑈)
9594adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝑈)
9688, 95unssd 3953 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ⊆ 𝑈)
97 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
98 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑏 ∈ V
9997, 98unex 7156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎𝑏) ∈ V
10099elpw 4323 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑏) ∈ 𝒫 𝑈 ↔ (𝑎𝑏) ⊆ 𝑈)
10196, 100sylibr 225 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ 𝒫 𝑈)
102 elinel2 3964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ Fin)
103102adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin)
104 elinel2 3964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
105104adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
106 unfi 8436 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
107103, 105, 106syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ Fin)
108101, 107elind 3962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
109108adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
110109ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
111 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
112 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
113111, 112oveq12d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
114113adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
11582, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
116115sselda 3763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → 𝑦𝐴)
117 fvres 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
118116, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
119118sumeq2dv 14721 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
120119adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
12189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝐵)
122121sselda 3763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → 𝑦𝐵)
123 fvres 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
124122, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
125124sumeq2dv 14721 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
126125adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
127120, 126oveq12d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
128127adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
129114, 128eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
130129ad4ant23 761 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
131 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = (𝑣 + 𝑢))
132 sge0resplit.in0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴𝐵) = ∅)
133132adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝐴𝐵) = ∅)
134115ad2antrl 719 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑎𝐴)
135121adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝐵)
136135adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑏𝐵)
137 ssin0 39877 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐵) = ∅ ∧ 𝑎𝐴𝑏𝐵) → (𝑎𝑏) = ∅)
138133, 134, 136, 137syl3anc 1490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = ∅)
139 eqidd 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = (𝑎𝑏))
140107adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ Fin)
141 rge0ssre 12487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
142 ax-resscn 10248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
143141, 142sstri 3772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,)+∞) ⊆ ℂ
1442, 27fge0iccico 41227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑈⟶(0[,)+∞))
145144ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝐹:𝑈⟶(0[,)+∞))
14696sselda 3763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
147146adantll 705 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
148145, 147ffvelrnd 6552 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ (0[,)+∞))
149143, 148sseldi 3761 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ ℂ)
150138, 139, 140, 149fsumsplit 14759 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
151150ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
152130, 131, 1513eqtr4d 2809 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
153 sumeq1 14707 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑎𝑏) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
154153rspceeqv 3480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
155110, 152, 154syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
15655a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ V)
15781, 155, 156elrnmptd 40016 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
158157ex 401 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
159158ex 401 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
160159ex 401 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))))
161160rexlimdvv 3184 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
162161imp 395 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
16362, 80, 162syl2anc 579 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
164163ex 401 . . . . . . . . . . . 12 (𝜑 → ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
165164rexlimdvv 3184 . . . . . . . . . . 11 (𝜑 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
166165imp 395 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
16754, 61, 166syl2anc 579 . . . . . . . . 9 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
168167ex 401 . . . . . . . 8 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
16981elrnmpt 5543 . . . . . . . . . . . . 13 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦)))
170169ibi 258 . . . . . . . . . . . 12 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
171170adantl 473 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
172 nfv 2009 . . . . . . . . . . . . 13 𝑥𝜑
173 nfcv 2907 . . . . . . . . . . . . . 14 𝑥𝑟
174 nfmpt1 4908 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
175174nfrn 5539 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
176173, 175nfel 2920 . . . . . . . . . . . . 13 𝑥 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
177172, 176nfan 1998 . . . . . . . . . . . 12 𝑥(𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
178 nfmpt1 4908 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
179178nfrn 5539 . . . . . . . . . . . . 13 𝑥ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
180 nfmpt1 4908 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
181180nfrn 5539 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
182 nfv 2009 . . . . . . . . . . . . . 14 𝑥 𝑟 = (𝑣 + 𝑢)
183181, 182nfrex 3153 . . . . . . . . . . . . 13 𝑥𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
184179, 183nfrex 3153 . . . . . . . . . . . 12 𝑥𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
185 inss2 3995 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ⊆ 𝐴
186185sseli 3759 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
187186adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝐴)
188117eqcomd 2771 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
189187, 188syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
190189sumeq2dv 14721 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
191 sumeq1 14707 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
192191cbvmptv 4911 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
193 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
194193inex1 4962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐴) ∈ V
195194elpw 4323 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
196185, 195mpbir 222 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ∈ 𝒫 𝐴
197196a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ 𝒫 𝐴)
198 elinel2 3964 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
199 inss1 3994 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴) ⊆ 𝑥
200199a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ⊆ 𝑥)
201 ssfi 8389 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐴) ⊆ 𝑥) → (𝑥𝐴) ∈ Fin)
202198, 200, 201syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
203197, 202elind 3962 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin))
204 eqidd 2766 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
205 sumeq1 14707 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥𝐴) → Σ𝑦𝑧 ((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
206205rspceeqv 3480 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
207203, 204, 206syl2anc 579 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
208 sumex 14706 . . . . . . . . . . . . . . . . . . 19 Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V
209208a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V)
210192, 207, 209elrnmptd 40016 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
211190, 210eqeltrd 2844 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
2122113ad2ant2 1164 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
213 sumeq1 14707 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
214213cbvmptv 4911 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
215 inss2 3995 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵) ⊆ 𝐵
216193inex1 4962 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ∈ V
217216elpw 4323 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐵) ∈ 𝒫 𝐵 ↔ (𝑥𝐵) ⊆ 𝐵)
218215, 217mpbir 222 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐵) ∈ 𝒫 𝐵
219218a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ 𝒫 𝐵)
220 inss1 3994 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ⊆ 𝑥
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ⊆ 𝑥)
222 ssfi 8389 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
223198, 221, 222syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
2242233ad2ant2 1164 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ Fin)
225219, 224elind 3962 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
226215sseli 3759 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
227123eqcomd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
228226, 227syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥𝐵) → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
229228sumeq2i 14717 . . . . . . . . . . . . . . . . . . . 20 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)
230229a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
2312303adant3 1162 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
232 sumeq1 14707 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑥𝐵) → Σ𝑦𝑧 ((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
233232rspceeqv 3480 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
234225, 231, 233syl2anc 579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
235 sumex 14706 . . . . . . . . . . . . . . . . . 18 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V
236235a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V)
237214, 234, 236elrnmptd 40016 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))
238 simp3 1168 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = Σ𝑦𝑥 (𝐹𝑦))
239185a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐴) ⊆ 𝐴)
240215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵) ⊆ 𝐵)
241 ssin0 39877 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐵) = ∅ ∧ (𝑥𝐴) ⊆ 𝐴 ∧ (𝑥𝐵) ⊆ 𝐵) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
242132, 239, 240, 241syl3anc 1490 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
243242adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
244 elinel1 3963 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
245 elpwi 4327 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
2474ineq2i 3975 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵))
248247a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵)))
249 dfss 3749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈𝑥 = (𝑥𝑈))
250249biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈𝑥 = (𝑥𝑈))
251 indi 4040 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
252251eqcomi 2774 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
253252a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
254248, 250, 2533eqtr4d 2809 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑈𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
255246, 254syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
256255adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
257198adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
258144ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
259246sselda 3763 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
260259adantll 705 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
261258, 260ffvelrnd 6552 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
262143, 261sseldi 3761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
263243, 256, 257, 262fsumsplit 14759 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
2642633adant3 1162 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
265238, 264eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
266 oveq2 6852 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
267266rspceeqv 3480 . . . . . . . . . . . . . . . 16 ((Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ∧ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
268237, 265, 267syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
269 oveq1 6851 . . . . . . . . . . . . . . . . . 18 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑣 + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
270269eqeq2d 2775 . . . . . . . . . . . . . . . . 17 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑟 = (𝑣 + 𝑢) ↔ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
271270rexbidv 3199 . . . . . . . . . . . . . . . 16 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
272271rspcev 3462 . . . . . . . . . . . . . . 15 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
273212, 268, 272syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
2742733exp 1148 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
275274adantr 472 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
276177, 184, 275rexlimd 3173 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
277171, 276mpd 15 . . . . . . . . . 10 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
278277, 59sylibr 225 . . . . . . . . 9 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)})
279278ex 401 . . . . . . . 8 (𝜑 → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}))
280168, 279impbid 203 . . . . . . 7 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
281280alrimiv 2022 . . . . . 6 (𝜑 → ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
282 dfcleq 2759 . . . . . 6 ({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
283281, 282sylibr 225 . . . . 5 (𝜑 → {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
284283supeq1d 8561 . . . 4 (𝜑 → sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
28526, 53, 2843eqtrrd 2804 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
28613, 2, 14sge0supre 41246 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
28716, 23oveq12d 6862 . . 3 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
288285, 286, 2873eqtr4d 2809 . 2 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
289 rexadd 12268 . . 3 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
29015, 22, 289syl2anc 579 . 2 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
291288, 290eqtrd 2799 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107  wal 1650   = wceq 1652  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cun 3732  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317   class class class wbr 4811  cmpt 4890  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6844  Fincfn 8162  supcsup 8555  cc 10189  cr 10190  0cc0 10191   + caddc 10194  +∞cpnf 10327  *cxr 10329   < clt 10330  cle 10331   +𝑒 cxad 12147  [,)cico 12382  [,]cicc 12383  Σcsu 14704  Σ^csumge0 41219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-xadd 12150  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-sum 14705  df-sumge0 41220
This theorem is referenced by:  sge0split  41266
  Copyright terms: Public domain W3C validator