Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resplit Structured version   Visualization version   GIF version

Theorem sge0resplit 42695
Description: Σ^ splits into two parts, when it's a real number. This is a special case of sge0split 42698. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resplit.a (𝜑𝐴𝑉)
sge0resplit.b (𝜑𝐵𝑊)
sge0resplit.u 𝑈 = (𝐴𝐵)
sge0resplit.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0resplit.f (𝜑𝐹:𝑈⟶(0[,]+∞))
sge0resplit.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0resplit (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))

Proof of Theorem sge0resplit
Dummy variables 𝑎 𝑏 𝑟 𝑢 𝑣 𝑥 𝑦 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0resplit.a . . . . . . 7 (𝜑𝐴𝑉)
2 sge0resplit.f . . . . . . . 8 (𝜑𝐹:𝑈⟶(0[,]+∞))
3 ssun1 4150 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
4 sge0resplit.u . . . . . . . . . . 11 𝑈 = (𝐴𝐵)
54eqcomi 2832 . . . . . . . . . 10 (𝐴𝐵) = 𝑈
63, 5sseqtri 4005 . . . . . . . . 9 𝐴𝑈
76a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
82, 7fssresd 6547 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
94a1i 11 . . . . . . . . 9 (𝜑𝑈 = (𝐴𝐵))
10 sge0resplit.b . . . . . . . . . 10 (𝜑𝐵𝑊)
11 unexg 7474 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
121, 10, 11syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ V)
139, 12eqeltrd 2915 . . . . . . . 8 (𝜑𝑈 ∈ V)
14 sge0resplit.re . . . . . . . 8 (𝜑 → (Σ^𝐹) ∈ ℝ)
1513, 2, 14sge0ssre 42686 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ)
161, 8, 15sge0supre 42678 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ))
1716, 15eqeltrrd 2916 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ)
18 ssun2 4151 . . . . . . . . . 10 𝐵 ⊆ (𝐴𝐵)
1918, 5sseqtri 4005 . . . . . . . . 9 𝐵𝑈
2019a1i 11 . . . . . . . 8 (𝜑𝐵𝑈)
212, 20fssresd 6547 . . . . . . 7 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
2213, 2, 14sge0ssre 42686 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ)
2310, 21, 22sge0supre 42678 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ))
2423, 22eqeltrrd 2916 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ)
25 rexadd 12628 . . . . 5 ((sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) ∈ ℝ ∧ sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < ) ∈ ℝ) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2617, 24, 25syl2anc 586 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
2713, 2, 14sge0rern 42677 . . . . . . . 8 (𝜑 → ¬ +∞ ∈ ran 𝐹)
28 nelrnres 41455 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐴))
2927, 28syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐴))
308, 29fge0iccico 42659 . . . . . 6 (𝜑 → (𝐹𝐴):𝐴⟶(0[,)+∞))
3130sge0rnre 42653 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ)
32 sge0rnn0 42657 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅
3332a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅)
341, 30sge0reval 42661 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐴)) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ))
3534eqcomd 2829 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
3635, 15eqeltrd 2915 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ)
37 supxrre3 41600 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3831, 33, 37syl2anc 586 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤))
3936, 38mpbid 234 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))𝑡𝑤)
40 nelrnres 41455 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝐵))
4127, 40syl 17 . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran (𝐹𝐵))
4221, 41fge0iccico 42659 . . . . . 6 (𝜑 → (𝐹𝐵):𝐵⟶(0[,)+∞))
4342sge0rnre 42653 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ)
44 sge0rnn0 42657 . . . . . 6 ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅
4544a1i 11 . . . . 5 (𝜑 → ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅)
4610, 42sge0reval 42661 . . . . . . . 8 (𝜑 → (Σ^‘(𝐹𝐵)) = sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ))
4746eqcomd 2829 . . . . . . 7 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
4847, 22eqeltrd 2915 . . . . . 6 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ)
49 supxrre3 41600 . . . . . . 7 ((ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ≠ ∅) → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5043, 45, 49syl2anc 586 . . . . . 6 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤))
5148, 50mpbid 234 . . . . 5 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑡𝑤)
52 eqid 2823 . . . . 5 {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}
5331, 33, 39, 43, 45, 51, 52supadd 11611 . . . 4 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) + sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )) = sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ))
54 simpl 485 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝜑)
55 vex 3499 . . . . . . . . . . . . 13 𝑟 ∈ V
56 eqeq1 2827 . . . . . . . . . . . . . . 15 (𝑧 = 𝑟 → (𝑧 = (𝑣 + 𝑢) ↔ 𝑟 = (𝑣 + 𝑢)))
5756rexbidv 3299 . . . . . . . . . . . . . 14 (𝑧 = 𝑟 → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5857rexbidv 3299 . . . . . . . . . . . . 13 (𝑧 = 𝑟 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢) ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
5955, 58elab 3669 . . . . . . . . . . . 12 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6059biimpi 218 . . . . . . . . . . 11 (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
6160adantl 484 . . . . . . . . . 10 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
62 simpl 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → 𝜑)
63 vex 3499 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
64 sumeq1 15047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6564cbvmptv 5171 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6665elrnmpt 5830 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦)))
6763, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6867biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
6968adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
70 vex 3499 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
71 sumeq1 15047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7271cbvmptv 5171 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7372elrnmpt 5830 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ V → (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7470, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7574biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7675adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
7769, 76jca 514 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
78 reeanv 3369 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) ↔ (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
7977, 78sylibr 236 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
8079adantl 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
81 eqid 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
82 elinel1 4174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
83 elpwi 4550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
84 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐴𝑎𝐴)
8584, 6sstrdi 3981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝐴𝑎𝑈)
8683, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ 𝒫 𝐴𝑎𝑈)
8782, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝑈)
8887adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎𝑈)
89 elinel1 4174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝐵)
90 elpwi 4550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
91 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐵𝑏𝐵)
9291, 19sstrdi 3981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝐵𝑏𝑈)
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑏 ∈ 𝒫 𝐵𝑏𝑈)
9489, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝑈)
9594adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝑈)
9688, 95unssd 4164 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ⊆ 𝑈)
97 vex 3499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
98 vex 3499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑏 ∈ V
9997, 98unex 7471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎𝑏) ∈ V
10099elpw 4545 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝑏) ∈ 𝒫 𝑈 ↔ (𝑎𝑏) ⊆ 𝑈)
10196, 100sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ 𝒫 𝑈)
102 elinel2 4175 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ Fin)
103102adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin)
104 elinel2 4175 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
105104adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
106 unfi 8787 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
107103, 105, 106syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ Fin)
108101, 107elind 4173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
109108adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
110109ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin))
111 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦))
112 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))
113111, 112oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
114113adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)))
11582, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
116115sselda 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → 𝑦𝐴)
117 fvres 6691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
118116, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦𝑎) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
119118sumeq2dv 15062 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
120119adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑎 (𝐹𝑦))
12189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → 𝑏𝐵)
122121sselda 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → 𝑦𝐵)
123 fvres 6691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
124122, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦𝑏) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
125124sumeq2dv 15062 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
126125adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → Σ𝑦𝑏 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑏 (𝐹𝑦))
127120, 126oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
128127adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) + Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
129114, 128eqtrd 2858 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
130129ad4ant23 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → (𝑣 + 𝑢) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
131 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = (𝑣 + 𝑢))
132 sge0resplit.in0 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴𝐵) = ∅)
133132adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝐴𝐵) = ∅)
134115ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑎𝐴)
135121adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑏𝐵)
136135adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → 𝑏𝐵)
137 ssin0 41324 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐵) = ∅ ∧ 𝑎𝐴𝑏𝐵) → (𝑎𝑏) = ∅)
138133, 134, 136, 137syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = ∅)
139 eqidd 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) = (𝑎𝑏))
140107adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑎𝑏) ∈ Fin)
141 rge0ssre 12847 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
142 ax-resscn 10596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ ℂ
143141, 142sstri 3978 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0[,)+∞) ⊆ ℂ
1442, 27fge0iccico 42659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑈⟶(0[,)+∞))
145144ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝐹:𝑈⟶(0[,)+∞))
14696sselda 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
147146adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → 𝑦𝑈)
148145, 147ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ (0[,)+∞))
149143, 148sseldi 3967 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ 𝑦 ∈ (𝑎𝑏)) → (𝐹𝑦) ∈ ℂ)
150138, 139, 140, 149fsumsplit 15099 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
151150ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦) = (Σ𝑦𝑎 (𝐹𝑦) + Σ𝑦𝑏 (𝐹𝑦)))
152130, 131, 1513eqtr4d 2868 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
153 sumeq1 15047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑎𝑏) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦))
154153rspceeqv 3640 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝑏) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦 ∈ (𝑎𝑏)(𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
155110, 152, 154syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
15655a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ V)
15781, 155, 156elrnmptd 41447 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) ∧ 𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
158157ex 415 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) ∧ (𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
159158ex 415 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin))) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
160159ex 415 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝐵 ∩ Fin)) → ((𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))))
161160rexlimdvv 3295 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦)) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
162161imp 409 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑣 = Σ𝑦𝑎 ((𝐹𝐴)‘𝑦) ∧ 𝑢 = Σ𝑦𝑏 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
16362, 80, 162syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
164163ex 415 . . . . . . . . . . . 12 (𝜑 → ((𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ 𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))) → (𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))))
165164rexlimdvv 3295 . . . . . . . . . . 11 (𝜑 → (∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
166165imp 409 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
16754, 61, 166syl2anc 586 . . . . . . . . 9 ((𝜑𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}) → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
168167ex 415 . . . . . . . 8 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} → 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
16981elrnmpt 5830 . . . . . . . . . . . . 13 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦)))
170169ibi 269 . . . . . . . . . . . 12 (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
171170adantl 484 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦))
172 nfv 1915 . . . . . . . . . . . . 13 𝑥𝜑
173 nfcv 2979 . . . . . . . . . . . . . 14 𝑥𝑟
174 nfmpt1 5166 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
175174nfrn 5826 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
176173, 175nfel 2994 . . . . . . . . . . . . 13 𝑥 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
177172, 176nfan 1900 . . . . . . . . . . . 12 𝑥(𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
178 nfmpt1 5166 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
179178nfrn 5826 . . . . . . . . . . . . 13 𝑥ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))
180 nfmpt1 5166 . . . . . . . . . . . . . . 15 𝑥(𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
181180nfrn 5826 . . . . . . . . . . . . . 14 𝑥ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))
182 nfv 1915 . . . . . . . . . . . . . 14 𝑥 𝑟 = (𝑣 + 𝑢)
183181, 182nfrex 3311 . . . . . . . . . . . . 13 𝑥𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
184179, 183nfrex 3311 . . . . . . . . . . . 12 𝑥𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)
185 inss2 4208 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ⊆ 𝐴
186185sseli 3965 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
187186adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝐴)
188117eqcomd 2829 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐴 → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
189187, 188syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) = ((𝐹𝐴)‘𝑦))
190189sumeq2dv 15062 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
191 sumeq1 15047 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
192191cbvmptv 5171 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
193 vex 3499 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ V
194193inex1 5223 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐴) ∈ V
195194elpw 4545 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
196185, 195mpbir 233 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴) ∈ 𝒫 𝐴
197196a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ 𝒫 𝐴)
198 elinel2 4175 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
199 inss1 4207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴) ⊆ 𝑥
200199a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ⊆ 𝑥)
201 ssfi 8740 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐴) ⊆ 𝑥) → (𝑥𝐴) ∈ Fin)
202198, 200, 201syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
203197, 202elind 4173 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin))
204 eqidd 2824 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
205 sumeq1 15047 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥𝐴) → Σ𝑦𝑧 ((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦))
206205rspceeqv 3640 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
207203, 204, 206syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐴)‘𝑦))
208 sumex 15046 . . . . . . . . . . . . . . . . . . 19 Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V
209208a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ V)
210192, 207, 209elrnmptd 41447 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
211190, 210eqeltrd 2915 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
2122113ad2ant2 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)))
213 sumeq1 15047 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → Σ𝑦𝑥 ((𝐹𝐵)‘𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
214213cbvmptv 5171 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) = (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
215 inss2 4208 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵) ⊆ 𝐵
216193inex1 5223 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ∈ V
217216elpw 4545 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐵) ∈ 𝒫 𝐵 ↔ (𝑥𝐵) ⊆ 𝐵)
218215, 217mpbir 233 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐵) ∈ 𝒫 𝐵
219218a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ 𝒫 𝐵)
220 inss1 4207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐵) ⊆ 𝑥
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ⊆ 𝑥)
222 ssfi 8740 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Fin ∧ (𝑥𝐵) ⊆ 𝑥) → (𝑥𝐵) ∈ Fin)
223198, 221, 222syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
2242233ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ Fin)
225219, 224elind 4173 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → (𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin))
226215sseli 3965 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
227123eqcomd 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐵 → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
228226, 227syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥𝐵) → (𝐹𝑦) = ((𝐹𝐵)‘𝑦))
229228sumeq2i 15058 . . . . . . . . . . . . . . . . . . . 20 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)
230229a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
2312303adant3 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
232 sumeq1 15047 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑥𝐵) → Σ𝑦𝑧 ((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦))
233232rspceeqv 3640 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐵) ∈ (𝒫 𝐵 ∩ Fin) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
234225, 231, 233syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) = Σ𝑦𝑧 ((𝐹𝐵)‘𝑦))
235 sumex 15046 . . . . . . . . . . . . . . . . . 18 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V
236235a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ V)
237214, 234, 236elrnmptd 41447 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)))
238 simp3 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = Σ𝑦𝑥 (𝐹𝑦))
239185a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐴) ⊆ 𝐴)
240215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵) ⊆ 𝐵)
241 ssin0 41324 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐵) = ∅ ∧ (𝑥𝐴) ⊆ 𝐴 ∧ (𝑥𝐵) ⊆ 𝐵) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
242132, 239, 240, 241syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
243242adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
244 elinel1 4174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
245 elpwi 4550 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
2474ineq2i 4188 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵))
248247a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = (𝑥 ∩ (𝐴𝐵)))
249 dfss 3955 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈𝑥 = (𝑥𝑈))
250249biimpi 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈𝑥 = (𝑥𝑈))
251 indi 4252 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
252251eqcomi 2832 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
253252a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
254248, 250, 2533eqtr4d 2868 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑈𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
255246, 254syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
256255adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
257198adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
258144ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
259246sselda 3969 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
260259adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
261258, 260ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
262143, 261sseldi 3967 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
263243, 256, 257, 262fsumsplit 15099 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
2642633adant3 1128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
265238, 264eqtrd 2858 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
266 oveq2 7166 . . . . . . . . . . . . . . . . 17 (𝑢 = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
267266rspceeqv 3640 . . . . . . . . . . . . . . . 16 ((Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)) ∧ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
268237, 265, 267syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
269 oveq1 7165 . . . . . . . . . . . . . . . . . 18 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑣 + 𝑢) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢))
270269eqeq2d 2834 . . . . . . . . . . . . . . . . 17 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (𝑟 = (𝑣 + 𝑢) ↔ 𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
271270rexbidv 3299 . . . . . . . . . . . . . . . 16 (𝑣 = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) → (∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢) ↔ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)))
272271rspcev 3625 . . . . . . . . . . . . . . 15 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)) ∧ ∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + 𝑢)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
273212, 268, 272syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑟 = Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
2742733exp 1115 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
275274adantr 483 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))))
276177, 184, 275rexlimd 3319 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑟 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢)))
277171, 276mpd 15 . . . . . . . . . 10 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑟 = (𝑣 + 𝑢))
278277, 59sylibr 236 . . . . . . . . 9 ((𝜑𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)})
279278ex 415 . . . . . . . 8 (𝜑 → (𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → 𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}))
280168, 279impbid 214 . . . . . . 7 (𝜑 → (𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
281280alrimiv 1928 . . . . . 6 (𝜑 → ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
282 dfcleq 2817 . . . . . 6 ({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∀𝑟(𝑟 ∈ {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} ↔ 𝑟 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))))
283281, 282sylibr 236 . . . . 5 (𝜑 → {𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)} = ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
284283supeq1d 8912 . . . 4 (𝜑 → sup({𝑧 ∣ ∃𝑣 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦))∃𝑢 ∈ ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦))𝑧 = (𝑣 + 𝑢)}, ℝ, < ) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
28526, 53, 2843eqtrrd 2863 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
28613, 2, 14sge0supre 42678 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
28716, 23oveq12d 7176 . . 3 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐴)‘𝑦)), ℝ, < ) +𝑒 sup(ran (𝑥 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝐵)‘𝑦)), ℝ, < )))
288285, 286, 2873eqtr4d 2868 . 2 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
289 rexadd 12628 . . 3 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
29015, 22, 289syl2anc 586 . 2 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
291288, 290eqtrd 2858 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678   +𝑒 cxad 12508  [,)cico 12743  [,]cicc 12744  Σcsu 15044  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-sumge0 42652
This theorem is referenced by:  sge0split  42698
  Copyright terms: Public domain W3C validator