Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisn0 Structured version   Visualization version   GIF version

Theorem unisn0 45048
Description: The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
unisn0 {∅} = ∅

Proof of Theorem unisn0
StepHypRef Expression
1 ssid 3969 . 2 {∅} ⊆ {∅}
2 uni0b 4897 . 2 ( {∅} = ∅ ↔ {∅} ⊆ {∅})
31, 2mpbir 231 1 {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3914  c0 4296  {csn 4589   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297  df-sn 4590  df-uni 4872
This theorem is referenced by:  founiiun0  45184  prsal  46316
  Copyright terms: Public domain W3C validator