| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisn0 | Structured version Visualization version GIF version | ||
| Description: The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| unisn0 | ⊢ ∪ {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ {∅} ⊆ {∅} | |
| 2 | uni0b 4900 | . 2 ⊢ (∪ {∅} = ∅ ↔ {∅} ⊆ {∅}) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∪ {∅} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-sn 4593 df-uni 4875 |
| This theorem is referenced by: founiiun0 45191 prsal 46323 |
| Copyright terms: Public domain | W3C validator |