Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisn0 Structured version   Visualization version   GIF version

Theorem unisn0 44956
Description: The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
unisn0 {∅} = ∅

Proof of Theorem unisn0
StepHypRef Expression
1 ssid 4031 . 2 {∅} ⊆ {∅}
2 uni0b 4957 . 2 ( {∅} = ∅ ↔ {∅} ⊆ {∅})
31, 2mpbir 231 1 {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wss 3976  c0 4352  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932
This theorem is referenced by:  founiiun0  45097  prsal  46239
  Copyright terms: Public domain W3C validator