Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisn0 | Structured version Visualization version GIF version |
Description: The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
unisn0 | ⊢ ∪ {∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3914 | . 2 ⊢ {∅} ⊆ {∅} | |
2 | uni0b 4826 | . 2 ⊢ (∪ {∅} = ∅ ↔ {∅} ⊆ {∅}) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ ∪ {∅} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ⊆ wss 3858 ∅c0 4225 {csn 4522 ∪ cuni 4798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-in 3865 df-ss 3875 df-nul 4226 df-sn 4523 df-uni 4799 |
This theorem is referenced by: founiiun0 42187 prsal 43326 |
Copyright terms: Public domain | W3C validator |