MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssindif0 Structured version   Visualization version   GIF version

Theorem ssindif0 4463
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 4457 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
2 ddif 4136 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32sseq2i 4011 . 2 (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴𝐵)
41, 3bitr2i 276 1 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  Vcvv 3473  cdif 3945  cin 3947  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  setind  9735
  Copyright terms: Public domain W3C validator