![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssindif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj2 4457 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4136 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | sseq2i 4011 | . 2 ⊢ (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵) |
4 | 1, 3 | bitr2i 276 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 Vcvv 3473 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: setind 9735 |
Copyright terms: Public domain | W3C validator |