Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssindif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj2 4391 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4071 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | sseq2i 3950 | . 2 ⊢ (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵) |
4 | 1, 3 | bitr2i 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: setind 9492 |
Copyright terms: Public domain | W3C validator |