MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssindif0 Structured version   Visualization version   GIF version

Theorem ssindif0 4397
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 4391 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
2 ddif 4071 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32sseq2i 3950 . 2 (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴𝐵)
41, 3bitr2i 275 1 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  setind  9492
  Copyright terms: Public domain W3C validator