Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssindif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj2 4354 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4042 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | sseq2i 3921 | . 2 ⊢ (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵) |
4 | 1, 3 | bitr2i 279 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 Vcvv 3409 ∖ cdif 3855 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-dif 3861 df-in 3865 df-ss 3875 df-nul 4226 |
This theorem is referenced by: setind 9209 |
Copyright terms: Public domain | W3C validator |