| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssindif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ssindif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj2 4407 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
| 2 | ddif 4090 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 3 | 2 | sseq2i 3960 | . 2 ⊢ (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵) |
| 4 | 1, 3 | bitr2i 276 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: setind 9648 setindregs 35200 |
| Copyright terms: Public domain | W3C validator |