MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssindif0 Structured version   Visualization version   GIF version

Theorem ssindif0 4360
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 4354 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
2 ddif 4042 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32sseq2i 3921 . 2 (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴𝐵)
41, 3bitr2i 279 1 (𝐴𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  Vcvv 3409  cdif 3855  cin 3857  wss 3858  c0 4225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-v 3411  df-dif 3861  df-in 3865  df-ss 3875  df-nul 4226
This theorem is referenced by:  setind  9209
  Copyright terms: Public domain W3C validator