![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj2 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . 2 ⊢ 𝐴 ⊆ V | |
2 | reldisj 4476 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: ssindif0 4487 intirr 6150 setsres 17225 setscom 17227 f1omvdco3 19491 psgnunilem5 19536 opsrtoslem2 22103 clsconn 23459 cldsubg 24140 uniinn0 32573 imadifxp 32623 |
Copyright terms: Public domain | W3C validator |