MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj2 Structured version   Visualization version   GIF version

Theorem disj2 4388
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
disj2 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))

Proof of Theorem disj2
StepHypRef Expression
1 ssv 3941 . 2 𝐴 ⊆ V
2 reldisj 4382 . 2 (𝐴 ⊆ V → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)))
31, 2ax-mp 5 1 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  ssindif0  4394  intirr  6012  setsres  16807  setscom  16809  f1omvdco3  18972  psgnunilem5  19017  opsrtoslem2  21173  clsconn  22489  cldsubg  23170  uniinn0  30791  imadifxp  30841
  Copyright terms: Public domain W3C validator