| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj2 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3959 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | reldisj 4403 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: ssindif0 4414 intirr 6065 setsres 17086 setscom 17088 f1omvdco3 19359 psgnunilem5 19404 opsrtoslem2 21989 clsconn 23343 cldsubg 24024 uniinn0 32525 imadifxp 32576 |
| Copyright terms: Public domain | W3C validator |