MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj2 Structured version   Visualization version   GIF version

Theorem disj2 4347
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
disj2 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))

Proof of Theorem disj2
StepHypRef Expression
1 ssv 3901 . 2 𝐴 ⊆ V
2 reldisj 4341 . 2 (𝐴 ⊆ V → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)))
31, 2ax-mp 5 1 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1542  Vcvv 3398  cdif 3840  cin 3842  wss 3843  c0 4211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-v 3400  df-dif 3846  df-in 3850  df-ss 3860  df-nul 4212
This theorem is referenced by:  ssindif0  4353  intirr  5952  setsres  16628  setscom  16630  f1omvdco3  18695  psgnunilem5  18740  opsrtoslem2  20867  clsconn  22181  cldsubg  22862  uniinn0  30464  imadifxp  30514
  Copyright terms: Public domain W3C validator