| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj2 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3983 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | reldisj 4428 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: ssindif0 4439 intirr 6107 setsres 17197 setscom 17199 f1omvdco3 19430 psgnunilem5 19475 opsrtoslem2 22014 clsconn 23368 cldsubg 24049 uniinn0 32531 imadifxp 32582 |
| Copyright terms: Public domain | W3C validator |