MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj2 Structured version   Visualization version   GIF version

Theorem disj2 4407
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
disj2 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))

Proof of Theorem disj2
StepHypRef Expression
1 ssv 3955 . 2 𝐴 ⊆ V
2 reldisj 4402 . 2 (𝐴 ⊆ V → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)))
31, 2ax-mp 5 1 ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  Vcvv 3437  cdif 3895  cin 3897  wss 3898  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283
This theorem is referenced by:  ssindif0  4413  intirr  6069  setsres  17091  setscom  17093  f1omvdco3  19363  psgnunilem5  19408  opsrtoslem2  21992  clsconn  23346  cldsubg  24027  uniinn0  32532  imadifxp  32583
  Copyright terms: Public domain W3C validator