| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj2 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3971 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | reldisj 4416 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: ssindif0 4427 intirr 6091 setsres 17148 setscom 17150 f1omvdco3 19379 psgnunilem5 19424 opsrtoslem2 21963 clsconn 23317 cldsubg 23998 uniinn0 32479 imadifxp 32530 |
| Copyright terms: Public domain | W3C validator |