| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undisj2 | Structured version Visualization version GIF version | ||
| Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
| Ref | Expression |
|---|---|
| undisj2 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un00 4394 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) | |
| 2 | indi 4233 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
| 3 | 2 | eqeq1i 2738 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅ ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: disjtp2 4668 f1oun2prg 14826 cnfldfunALT 21308 cnfldfunALTOLD 21321 |
| Copyright terms: Public domain | W3C validator |