MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj2 Structured version   Visualization version   GIF version

Theorem undisj2 4443
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem undisj2
StepHypRef Expression
1 un00 4425 . 2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
2 indi 4264 . . 3 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32eqeq1i 2741 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
41, 3bitr4i 278 1 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cun 3929  cin 3930  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314
This theorem is referenced by:  disjtp2  4697  f1oun2prg  14941  cnfldfunALT  21335  cnfldfunALTOLD  21348
  Copyright terms: Public domain W3C validator