MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj2 Structured version   Visualization version   GIF version

Theorem undisj2 4377
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem undisj2
StepHypRef Expression
1 un00 4357 . 2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
2 indi 4188 . . 3 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32eqeq1i 2742 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
41, 3bitr4i 281 1 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  cun 3864  cin 3865  c0 4237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238
This theorem is referenced by:  disjtp2  4632  f1oun2prg  14482  cnfldfun  20375
  Copyright terms: Public domain W3C validator