![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undisj2 | Structured version Visualization version GIF version |
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
undisj2 | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 4442 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) | |
2 | indi 4273 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
3 | 2 | eqeq1i 2736 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅ ↔ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ∅) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ (𝐴 ∩ 𝐶) = ∅) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: disjtp2 4720 f1oun2prg 14875 cnfldfunALT 21247 cnfldfunALTOLD 21248 gg-cnfldfunALT 35648 |
Copyright terms: Public domain | W3C validator |