MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj2 Structured version   Visualization version   GIF version

Theorem undisj2 4396
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)

Proof of Theorem undisj2
StepHypRef Expression
1 un00 4376 . 2 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
2 indi 4207 . . 3 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32eqeq1i 2743 . 2 ((𝐴 ∩ (𝐵𝐶)) = ∅ ↔ ((𝐴𝐵) ∪ (𝐴𝐶)) = ∅)
41, 3bitr4i 277 1 (((𝐴𝐵) = ∅ ∧ (𝐴𝐶) = ∅) ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  cun 3885  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  disjtp2  4652  f1oun2prg  14630  cnfldfunALT  20610  cnfldfunALTOLD  20611
  Copyright terms: Public domain W3C validator