| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3985 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: sseqtrdi 3999 sseqtri 4007 abss 4038 ssrab 4048 ssindif0 4439 difcom 4464 ssunsn2 4803 ssunpr 4810 sspr 4811 sstp 4812 ssintrab 4947 iunpwss 5083 propssopi 5483 dffun2OLDOLD 6543 f1imadifssran 6622 ssimaex 6964 elpwun 7763 ssfi 9187 frfi 9293 alephislim 10097 cardaleph 10103 fin1a2lem12 10425 zornn0g 10519 ssxr 11304 nnwo 12929 isstruct 17171 issubmgm 18680 issubm 18781 grpissubg 19129 issubrng 20507 cntzsubrng 20527 islinds 21769 basdif0 22891 tgdif0 22930 cmpsublem 23337 cmpsub 23338 hauscmplem 23344 2ndcctbss 23393 fbncp 23777 cnextfval 24000 eltsms 24071 reconn 24768 cmssmscld 25302 nocvxminlem 27741 nocvxmin 27742 axcontlem3 28945 axcontlem4 28946 umgredg 29117 nbuhgr 29322 uhgrvd00 29514 vtxdginducedm1 29523 chsscon1i 31443 hatomistici 32343 chirredlem4 32374 atabs2i 32383 mdsymlem1 32384 mdsymlem3 32386 mdsymlem6 32389 mdsymlem8 32391 dmdbr5ati 32403 iundifdif 32543 poimir 37677 ismblfin 37685 cossssid2 38486 ntrk0kbimka 44063 ntrclsk3 44094 ntrneicls11 44114 wfaxrep 45019 wfaxsep 45020 abssf 45136 ssrabf 45138 stoweidlem57 46086 ovnsubadd 46601 ovnovollem3 46687 linccl 48390 lincdifsn 48400 |
| Copyright terms: Public domain | W3C validator |