| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3976 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: sseqtrdi 3990 sseqtri 3998 abss 4029 ssrab 4039 ssindif0 4430 difcom 4455 ssunsn2 4794 ssunpr 4801 sspr 4802 sstp 4803 ssintrab 4938 iunpwss 5074 propssopi 5471 dffun2OLDOLD 6526 f1imadifssran 6605 ssimaex 6949 elpwun 7748 ssfi 9143 frfi 9239 alephislim 10043 cardaleph 10049 fin1a2lem12 10371 zornn0g 10465 ssxr 11250 nnwo 12879 isstruct 17129 issubmgm 18636 issubm 18737 grpissubg 19085 issubrng 20463 cntzsubrng 20483 islinds 21725 basdif0 22847 tgdif0 22886 cmpsublem 23293 cmpsub 23294 hauscmplem 23300 2ndcctbss 23349 fbncp 23733 cnextfval 23956 eltsms 24027 reconn 24724 cmssmscld 25257 nocvxminlem 27696 nocvxmin 27697 axcontlem3 28900 axcontlem4 28901 umgredg 29072 nbuhgr 29277 uhgrvd00 29469 vtxdginducedm1 29478 chsscon1i 31398 hatomistici 32298 chirredlem4 32329 atabs2i 32338 mdsymlem1 32339 mdsymlem3 32341 mdsymlem6 32344 mdsymlem8 32346 dmdbr5ati 32358 iundifdif 32498 poimir 37654 ismblfin 37662 cossssid2 38466 ntrk0kbimka 44035 ntrclsk3 44066 ntrneicls11 44086 wfaxrep 44991 wfaxsep 44992 abssf 45113 ssrabf 45115 stoweidlem57 46062 ovnsubadd 46577 ovnovollem3 46663 linccl 48407 lincdifsn 48417 |
| Copyright terms: Public domain | W3C validator |