MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq2i Structured version   Visualization version   GIF version

Theorem sseq2i 3960
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
sseq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq2 3957 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3443  df-in 3904  df-ss 3914
This theorem is referenced by:  sseqtri  3967  sseqtrdi  3981  abss  4004  ssrab  4017  ssindif0  4408  difcom  4431  ssunsn2  4772  ssunpr  4777  sspr  4778  sstp  4779  ssintrab  4915  iunpwss  5049  propssopi  5441  dffun2OLDOLD  6478  ssimaex  6893  elpwun  7661  ssfi  9017  frfi  9132  alephislim  9919  cardaleph  9925  fin1a2lem12  10247  zornn0g  10341  ssxr  11124  nnwo  12733  isstruct  16930  issubm  18519  grpissubg  18851  islinds  21099  basdif0  22186  tgdif0  22225  cmpsublem  22633  cmpsub  22634  hauscmplem  22640  2ndcctbss  22689  fbncp  23073  cnextfval  23296  eltsms  23367  reconn  24074  cmssmscld  24597  axcontlem3  27470  axcontlem4  27471  umgredg  27644  nbuhgr  27846  uhgrvd00  28037  vtxdginducedm1  28046  chsscon1i  29960  hatomistici  30860  chirredlem4  30891  atabs2i  30900  mdsymlem1  30901  mdsymlem3  30903  mdsymlem6  30906  mdsymlem8  30908  dmdbr5ati  30920  iundifdif  31037  nocvxminlem  34046  nocvxmin  34047  poimir  35882  ismblfin  35890  cossssid2  36702  ntrk0kbimka  41883  ntrclsk3  41914  ntrneicls11  41934  abssf  42896  ssrabf  42898  stoweidlem57  43848  ovnsubadd  44361  ovnovollem3  44447  issubmgm  45608  linccl  46020  lincdifsn  46030
  Copyright terms: Public domain W3C validator