| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3970 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: sseqtrdi 3984 sseqtri 3992 abss 4023 ssrab 4032 ssindif0 4423 difcom 4448 ssunsn2 4787 ssunpr 4794 sspr 4795 sstp 4796 ssintrab 4931 iunpwss 5066 propssopi 5463 f1imadifssran 6586 ssimaex 6928 elpwun 7725 ssfi 9114 frfi 9208 alephislim 10012 cardaleph 10018 fin1a2lem12 10340 zornn0g 10434 ssxr 11219 nnwo 12848 isstruct 17098 issubmgm 18605 issubm 18706 grpissubg 19054 issubrng 20432 cntzsubrng 20452 islinds 21694 basdif0 22816 tgdif0 22855 cmpsublem 23262 cmpsub 23263 hauscmplem 23269 2ndcctbss 23318 fbncp 23702 cnextfval 23925 eltsms 23996 reconn 24693 cmssmscld 25226 nocvxminlem 27665 nocvxmin 27666 axcontlem3 28869 axcontlem4 28870 umgredg 29041 nbuhgr 29246 uhgrvd00 29438 vtxdginducedm1 29447 chsscon1i 31364 hatomistici 32264 chirredlem4 32295 atabs2i 32304 mdsymlem1 32305 mdsymlem3 32307 mdsymlem6 32310 mdsymlem8 32312 dmdbr5ati 32324 iundifdif 32464 poimir 37620 ismblfin 37628 cossssid2 38432 ntrk0kbimka 44001 ntrclsk3 44032 ntrneicls11 44052 wfaxrep 44957 wfaxsep 44958 abssf 45079 ssrabf 45081 stoweidlem57 46028 ovnsubadd 46543 ovnovollem3 46629 linccl 48376 lincdifsn 48386 |
| Copyright terms: Public domain | W3C validator |