Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq2 3943 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: sseqtri 3953 sseqtrdi 3967 abss 3990 ssrab 4002 ssindif0 4394 difcom 4416 ssunsn2 4757 ssunpr 4762 sspr 4763 sstp 4764 ssintrab 4899 iunpwss 5032 propssopi 5416 dffun2 6428 ssimaex 6835 elpwun 7597 ssfi 8918 frfi 8989 alephislim 9770 cardaleph 9776 fin1a2lem12 10098 zornn0g 10192 ssxr 10975 nnwo 12582 isstruct 16781 issubm 18357 grpissubg 18690 islinds 20926 basdif0 22011 tgdif0 22050 cmpsublem 22458 cmpsub 22459 hauscmplem 22465 2ndcctbss 22514 fbncp 22898 cnextfval 23121 eltsms 23192 reconn 23897 cmssmscld 24419 axcontlem3 27237 axcontlem4 27238 umgredg 27411 nbuhgr 27613 uhgrvd00 27804 vtxdginducedm1 27813 chsscon1i 29725 hatomistici 30625 chirredlem4 30656 atabs2i 30665 mdsymlem1 30666 mdsymlem3 30668 mdsymlem6 30671 mdsymlem8 30673 dmdbr5ati 30685 iundifdif 30803 nocvxminlem 33899 nocvxmin 33900 poimir 35737 ismblfin 35745 cossssid2 36513 ntrk0kbimka 41538 ntrclsk3 41569 ntrneicls11 41589 abssf 42551 ssrabf 42553 stoweidlem57 43488 ovnsubadd 44000 ovnovollem3 44086 issubmgm 45231 linccl 45643 lincdifsn 45653 |
Copyright terms: Public domain | W3C validator |