Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq2 3957 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ⊆ wss 3897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3904 df-ss 3914 |
This theorem is referenced by: sseqtri 3967 sseqtrdi 3981 abss 4004 ssrab 4017 ssindif0 4408 difcom 4431 ssunsn2 4772 ssunpr 4777 sspr 4778 sstp 4779 ssintrab 4915 iunpwss 5049 propssopi 5441 dffun2OLDOLD 6478 ssimaex 6893 elpwun 7661 ssfi 9017 frfi 9132 alephislim 9919 cardaleph 9925 fin1a2lem12 10247 zornn0g 10341 ssxr 11124 nnwo 12733 isstruct 16930 issubm 18519 grpissubg 18851 islinds 21099 basdif0 22186 tgdif0 22225 cmpsublem 22633 cmpsub 22634 hauscmplem 22640 2ndcctbss 22689 fbncp 23073 cnextfval 23296 eltsms 23367 reconn 24074 cmssmscld 24597 axcontlem3 27470 axcontlem4 27471 umgredg 27644 nbuhgr 27846 uhgrvd00 28037 vtxdginducedm1 28046 chsscon1i 29960 hatomistici 30860 chirredlem4 30891 atabs2i 30900 mdsymlem1 30901 mdsymlem3 30903 mdsymlem6 30906 mdsymlem8 30908 dmdbr5ati 30920 iundifdif 31037 nocvxminlem 34046 nocvxmin 34047 poimir 35882 ismblfin 35890 cossssid2 36702 ntrk0kbimka 41883 ntrclsk3 41914 ntrneicls11 41934 abssf 42896 ssrabf 42898 stoweidlem57 43848 ovnsubadd 44361 ovnovollem3 44447 issubmgm 45608 linccl 46020 lincdifsn 46030 |
Copyright terms: Public domain | W3C validator |