| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3964 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 |
| This theorem is referenced by: sseqtrdi 3978 sseqtri 3986 abss 4017 ssrab 4026 ssindif0 4417 difcom 4442 ssunsn2 4781 ssunpr 4788 sspr 4789 sstp 4790 ssintrab 4924 iunpwss 5059 propssopi 5455 f1imadifssran 6572 ssimaex 6912 elpwun 7709 ssfi 9097 frfi 9190 alephislim 9996 cardaleph 10002 fin1a2lem12 10324 zornn0g 10418 ssxr 11203 nnwo 12832 isstruct 17081 issubmgm 18594 issubm 18695 grpissubg 19043 issubrng 20450 cntzsubrng 20470 islinds 21734 basdif0 22856 tgdif0 22895 cmpsublem 23302 cmpsub 23303 hauscmplem 23309 2ndcctbss 23358 fbncp 23742 cnextfval 23965 eltsms 24036 reconn 24733 cmssmscld 25266 nobdaymin 27705 nocvxminlem 27706 axcontlem3 28929 axcontlem4 28930 umgredg 29101 nbuhgr 29306 uhgrvd00 29498 vtxdginducedm1 29507 chsscon1i 31424 hatomistici 32324 chirredlem4 32355 atabs2i 32364 mdsymlem1 32365 mdsymlem3 32367 mdsymlem6 32370 mdsymlem8 32372 dmdbr5ati 32384 iundifdif 32524 poimir 37635 ismblfin 37643 cossssid2 38447 ntrk0kbimka 44015 ntrclsk3 44046 ntrneicls11 44066 wfaxrep 44971 wfaxsep 44972 abssf 45093 ssrabf 45095 stoweidlem57 46042 ovnsubadd 46557 ovnovollem3 46643 grlimedgclnbgr 47983 linccl 48403 lincdifsn 48413 |
| Copyright terms: Public domain | W3C validator |