| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3956 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: sseqtrdi 3970 sseqtri 3978 abss 4009 ssrab 4018 ssindif0 4409 difcom 4434 ssunsn2 4774 ssunpr 4781 sspr 4782 sstp 4783 ssintrab 4916 iunpwss 5050 propssopi 5443 f1imadifssran 6562 ssimaex 6902 elpwun 7697 ssfi 9077 frfi 9164 alephislim 9969 cardaleph 9975 fin1a2lem12 10297 zornn0g 10391 ssxr 11177 nnwo 12806 isstruct 17058 issubmgm 18605 issubm 18706 grpissubg 19054 issubrng 20457 cntzsubrng 20477 islinds 21741 basdif0 22863 tgdif0 22902 cmpsublem 23309 cmpsub 23310 hauscmplem 23316 2ndcctbss 23365 fbncp 23749 cnextfval 23972 eltsms 24043 reconn 24739 cmssmscld 25272 nobdaymin 27711 nocvxminlem 27712 axcontlem3 28939 axcontlem4 28940 umgredg 29111 nbuhgr 29316 uhgrvd00 29508 vtxdginducedm1 29517 chsscon1i 31434 hatomistici 32334 chirredlem4 32365 atabs2i 32374 mdsymlem1 32375 mdsymlem3 32377 mdsymlem6 32380 mdsymlem8 32382 dmdbr5ati 32394 iundifdif 32534 poimir 37693 ismblfin 37701 cossssid2 38505 ntrk0kbimka 44072 ntrclsk3 44103 ntrneicls11 44123 wfaxrep 45027 wfaxsep 45028 abssf 45149 ssrabf 45151 stoweidlem57 46095 ovnsubadd 46610 ovnovollem3 46696 grlimedgclnbgr 48026 linccl 48446 lincdifsn 48456 |
| Copyright terms: Public domain | W3C validator |