Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq2 3948 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: sseqtri 3958 sseqtrdi 3972 abss 3995 ssrab 4007 ssindif0 4398 difcom 4420 ssunsn2 4761 ssunpr 4766 sspr 4767 sstp 4768 ssintrab 4903 iunpwss 5037 propssopi 5423 dffun2OLD 6448 ssimaex 6862 elpwun 7628 ssfi 8965 frfi 9068 alephislim 9848 cardaleph 9854 fin1a2lem12 10176 zornn0g 10270 ssxr 11053 nnwo 12662 isstruct 16862 issubm 18451 grpissubg 18784 islinds 21025 basdif0 22112 tgdif0 22151 cmpsublem 22559 cmpsub 22560 hauscmplem 22566 2ndcctbss 22615 fbncp 22999 cnextfval 23222 eltsms 23293 reconn 24000 cmssmscld 24523 axcontlem3 27343 axcontlem4 27344 umgredg 27517 nbuhgr 27719 uhgrvd00 27910 vtxdginducedm1 27919 chsscon1i 29833 hatomistici 30733 chirredlem4 30764 atabs2i 30773 mdsymlem1 30774 mdsymlem3 30776 mdsymlem6 30779 mdsymlem8 30781 dmdbr5ati 30793 iundifdif 30911 nocvxminlem 33981 nocvxmin 33982 poimir 35819 ismblfin 35827 cossssid2 36593 ntrk0kbimka 41656 ntrclsk3 41687 ntrneicls11 41707 abssf 42669 ssrabf 42671 stoweidlem57 43605 ovnsubadd 44117 ovnovollem3 44203 issubmgm 45354 linccl 45766 lincdifsn 45776 |
Copyright terms: Public domain | W3C validator |