| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3957 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: sseqtrdi 3971 sseqtri 3979 abss 4011 ssrab 4020 ssindif0 4413 difcom 4438 ssunsn2 4780 ssunpr 4787 sspr 4788 sstp 4789 ssintrab 4923 iunpwss 5059 propssopi 5453 f1imadifssran 6575 ssimaex 6916 elpwun 7711 ssfi 9093 frfi 9180 alephislim 9985 cardaleph 9991 fin1a2lem12 10313 zornn0g 10407 ssxr 11193 nnwo 12817 isstruct 17070 issubmgm 18618 issubm 18719 grpissubg 19067 issubrng 20471 cntzsubrng 20491 islinds 21755 basdif0 22888 tgdif0 22927 cmpsublem 23334 cmpsub 23335 hauscmplem 23341 2ndcctbss 23390 fbncp 23774 cnextfval 23997 eltsms 24068 reconn 24764 cmssmscld 25297 nobdaymin 27736 nocvxminlem 27737 axcontlem3 28965 axcontlem4 28966 umgredg 29137 nbuhgr 29342 uhgrvd00 29534 vtxdginducedm1 29543 chsscon1i 31463 hatomistici 32363 chirredlem4 32394 atabs2i 32403 mdsymlem1 32404 mdsymlem3 32406 mdsymlem6 32409 mdsymlem8 32411 dmdbr5ati 32423 iundifdif 32563 poimir 37766 ismblfin 37774 cossssid2 38643 ntrk0kbimka 44196 ntrclsk3 44227 ntrneicls11 44247 wfaxrep 45151 wfaxsep 45152 abssf 45272 ssrabf 45274 stoweidlem57 46217 ovnsubadd 46732 ovnovollem3 46818 grlimedgclnbgr 48157 linccl 48576 lincdifsn 48586 |
| Copyright terms: Public domain | W3C validator |