| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq2 3973 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: sseqtrdi 3987 sseqtri 3995 abss 4026 ssrab 4036 ssindif0 4427 difcom 4452 ssunsn2 4791 ssunpr 4798 sspr 4799 sstp 4800 ssintrab 4935 iunpwss 5071 propssopi 5468 dffun2OLDOLD 6523 f1imadifssran 6602 ssimaex 6946 elpwun 7745 ssfi 9137 frfi 9232 alephislim 10036 cardaleph 10042 fin1a2lem12 10364 zornn0g 10458 ssxr 11243 nnwo 12872 isstruct 17122 issubmgm 18629 issubm 18730 grpissubg 19078 issubrng 20456 cntzsubrng 20476 islinds 21718 basdif0 22840 tgdif0 22879 cmpsublem 23286 cmpsub 23287 hauscmplem 23293 2ndcctbss 23342 fbncp 23726 cnextfval 23949 eltsms 24020 reconn 24717 cmssmscld 25250 nocvxminlem 27689 nocvxmin 27690 axcontlem3 28893 axcontlem4 28894 umgredg 29065 nbuhgr 29270 uhgrvd00 29462 vtxdginducedm1 29471 chsscon1i 31391 hatomistici 32291 chirredlem4 32322 atabs2i 32331 mdsymlem1 32332 mdsymlem3 32334 mdsymlem6 32337 mdsymlem8 32339 dmdbr5ati 32351 iundifdif 32491 poimir 37647 ismblfin 37655 cossssid2 38459 ntrk0kbimka 44028 ntrclsk3 44059 ntrneicls11 44079 wfaxrep 44984 wfaxsep 44985 abssf 45106 ssrabf 45108 stoweidlem57 46055 ovnsubadd 46570 ovnovollem3 46656 linccl 48403 lincdifsn 48413 |
| Copyright terms: Public domain | W3C validator |