![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq2 4035 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: sseqtri 4045 sseqtrdi 4059 abss 4086 ssrab 4096 ssindif0 4487 difcom 4512 ssunsn2 4852 ssunpr 4859 sspr 4860 sstp 4861 ssintrab 4995 iunpwss 5130 propssopi 5527 dffun2OLDOLD 6585 ssimaex 7007 elpwun 7804 ssfi 9240 frfi 9349 alephislim 10152 cardaleph 10158 fin1a2lem12 10480 zornn0g 10574 ssxr 11359 nnwo 12978 isstruct 17199 issubmgm 18740 issubm 18838 grpissubg 19186 issubrng 20573 cntzsubrng 20593 islinds 21852 basdif0 22981 tgdif0 23020 cmpsublem 23428 cmpsub 23429 hauscmplem 23435 2ndcctbss 23484 fbncp 23868 cnextfval 24091 eltsms 24162 reconn 24869 cmssmscld 25403 nocvxminlem 27840 nocvxmin 27841 axcontlem3 28999 axcontlem4 29000 umgredg 29173 nbuhgr 29378 uhgrvd00 29570 vtxdginducedm1 29579 chsscon1i 31494 hatomistici 32394 chirredlem4 32425 atabs2i 32434 mdsymlem1 32435 mdsymlem3 32437 mdsymlem6 32440 mdsymlem8 32442 dmdbr5ati 32454 iundifdif 32585 poimir 37613 ismblfin 37621 cossssid2 38424 ntrk0kbimka 44001 ntrclsk3 44032 ntrneicls11 44052 abssf 45014 ssrabf 45016 stoweidlem57 45978 ovnsubadd 46493 ovnovollem3 46579 linccl 48143 lincdifsn 48153 |
Copyright terms: Public domain | W3C validator |