| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3919 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4292 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3902 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-in 3910 df-nul 4285 |
| This theorem is referenced by: minel 4417 disji 5077 disjiun 5080 onnseq 8267 uniinqs 8724 en3lplem1 9508 cplem1 9785 fpwwe2lem11 10535 limsupgre 15388 cat1lem 18003 lmcls 23187 conncn 23311 iunconnlem 23312 conncompclo 23320 2ndcsep 23344 lfinpfin 23409 locfincmp 23411 txcls 23489 pthaus 23523 qtopeu 23601 trfbas2 23728 filss 23738 zfbas 23781 fmfnfm 23843 tsmsfbas 24013 restmetu 24456 qdensere 24655 reperflem 24705 reconnlem1 24713 metds0 24737 metnrmlem1a 24745 minveclem3b 25326 ovolicc2lem5 25420 taylfval 26264 wlk1walk 29584 wwlksm1edg 29826 disjif 32522 disjif2 32525 dfufd2lem 33487 subfacp1lem6 35168 erdszelem5 35178 pconnconn 35214 cvmseu 35259 neibastop2lem 36344 topdifinffinlem 37331 sstotbnd3 37766 brtrclfv2 43710 corcltrcl 43722 disjinfi 45180 |
| Copyright terms: Public domain | W3C validator |