| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3942 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4316 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-in 3933 df-nul 4309 |
| This theorem is referenced by: minel 4441 disji 5104 disjiun 5107 onnseq 8358 uniinqs 8811 en3lplem1 9626 cplem1 9903 fpwwe2lem11 10655 limsupgre 15497 cat1lem 18109 lmcls 23240 conncn 23364 iunconnlem 23365 conncompclo 23373 2ndcsep 23397 lfinpfin 23462 locfincmp 23464 txcls 23542 pthaus 23576 qtopeu 23654 trfbas2 23781 filss 23791 zfbas 23834 fmfnfm 23896 tsmsfbas 24066 restmetu 24509 qdensere 24708 reperflem 24758 reconnlem1 24766 metds0 24790 metnrmlem1a 24798 minveclem3b 25380 ovolicc2lem5 25474 taylfval 26318 wlk1walk 29619 wwlksm1edg 29863 disjif 32559 disjif2 32562 dfufd2lem 33564 subfacp1lem6 35207 erdszelem5 35217 pconnconn 35253 cvmseu 35298 neibastop2lem 36378 topdifinffinlem 37365 sstotbnd3 37800 brtrclfv2 43751 corcltrcl 43763 disjinfi 45216 |
| Copyright terms: Public domain | W3C validator |