![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version |
Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
Ref | Expression |
---|---|
inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | ne0i 4364 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 |
This theorem is referenced by: minel 4489 disji 5151 disjiun 5154 onnseq 8400 uniinqs 8855 en3lplem1 9681 cplem1 9958 fpwwe2lem11 10710 limsupgre 15527 cat1lem 18163 lmcls 23331 conncn 23455 iunconnlem 23456 conncompclo 23464 2ndcsep 23488 lfinpfin 23553 locfincmp 23555 txcls 23633 pthaus 23667 qtopeu 23745 trfbas2 23872 filss 23882 zfbas 23925 fmfnfm 23987 tsmsfbas 24157 restmetu 24604 qdensere 24811 reperflem 24859 reconnlem1 24867 metds0 24891 metnrmlem1a 24899 minveclem3b 25481 ovolicc2lem5 25575 taylfval 26418 wlk1walk 29675 wwlksm1edg 29914 disjif 32600 disjif2 32603 dfufd2lem 33542 subfacp1lem6 35153 erdszelem5 35163 pconnconn 35199 cvmseu 35244 neibastop2lem 36326 topdifinffinlem 37313 sstotbnd3 37736 brtrclfv2 43689 corcltrcl 43701 disjinfi 45099 |
Copyright terms: Public domain | W3C validator |