| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4307 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-in 3924 df-nul 4300 |
| This theorem is referenced by: minel 4432 disji 5095 disjiun 5098 onnseq 8316 uniinqs 8773 en3lplem1 9572 cplem1 9849 fpwwe2lem11 10601 limsupgre 15454 cat1lem 18065 lmcls 23196 conncn 23320 iunconnlem 23321 conncompclo 23329 2ndcsep 23353 lfinpfin 23418 locfincmp 23420 txcls 23498 pthaus 23532 qtopeu 23610 trfbas2 23737 filss 23747 zfbas 23790 fmfnfm 23852 tsmsfbas 24022 restmetu 24465 qdensere 24664 reperflem 24714 reconnlem1 24722 metds0 24746 metnrmlem1a 24754 minveclem3b 25335 ovolicc2lem5 25429 taylfval 26273 wlk1walk 29574 wwlksm1edg 29818 disjif 32514 disjif2 32517 dfufd2lem 33527 subfacp1lem6 35179 erdszelem5 35189 pconnconn 35225 cvmseu 35270 neibastop2lem 36355 topdifinffinlem 37342 sstotbnd3 37777 brtrclfv2 43723 corcltrcl 43735 disjinfi 45193 |
| Copyright terms: Public domain | W3C validator |