| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4288 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-in 3904 df-nul 4281 |
| This theorem is referenced by: minel 4413 disji 5074 disjiun 5077 onnseq 8264 uniinqs 8721 en3lplem1 9502 cplem1 9782 fpwwe2lem11 10532 limsupgre 15388 cat1lem 18003 lmcls 23217 conncn 23341 iunconnlem 23342 conncompclo 23350 2ndcsep 23374 lfinpfin 23439 locfincmp 23441 txcls 23519 pthaus 23553 qtopeu 23631 trfbas2 23758 filss 23768 zfbas 23811 fmfnfm 23873 tsmsfbas 24043 restmetu 24485 qdensere 24684 reperflem 24734 reconnlem1 24742 metds0 24766 metnrmlem1a 24774 minveclem3b 25355 ovolicc2lem5 25449 taylfval 26293 wlk1walk 29617 wwlksm1edg 29859 disjif 32558 disjif2 32561 dfufd2lem 33514 subfacp1lem6 35229 erdszelem5 35239 pconnconn 35275 cvmseu 35320 neibastop2lem 36404 topdifinffinlem 37391 sstotbnd3 37815 brtrclfv2 43819 corcltrcl 43831 disjinfi 45288 |
| Copyright terms: Public domain | W3C validator |