Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version |
Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
Ref | Expression |
---|---|
inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3913 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | ne0i 4280 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
3 | 1, 2 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ≠ wne 2940 ∩ cin 3896 ∅c0 4268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3443 df-dif 3900 df-in 3904 df-nul 4269 |
This theorem is referenced by: minel 4411 disji 5072 disjiun 5076 onnseq 8237 uniinqs 8649 en3lplem1 9461 cplem1 9738 fpwwe2lem11 10490 limsupgre 15281 cat1lem 17900 lmcls 22551 conncn 22675 iunconnlem 22676 conncompclo 22684 2ndcsep 22708 lfinpfin 22773 locfincmp 22775 txcls 22853 pthaus 22887 qtopeu 22965 trfbas2 23092 filss 23102 zfbas 23145 fmfnfm 23207 tsmsfbas 23377 restmetu 23824 qdensere 24031 reperflem 24079 reconnlem1 24087 metds0 24111 metnrmlem1a 24119 minveclem3b 24690 ovolicc2lem5 24783 taylfval 25616 wlk1walk 28236 wwlksm1edg 28475 disjif 31145 disjif2 31148 subfacp1lem6 33387 erdszelem5 33397 pconnconn 33433 cvmseu 33478 neibastop2lem 34640 topdifinffinlem 35616 sstotbnd3 36032 brtrclfv2 41645 corcltrcl 41657 disjinfi 43047 |
Copyright terms: Public domain | W3C validator |