| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4304 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-in 3921 df-nul 4297 |
| This theorem is referenced by: minel 4429 disji 5092 disjiun 5095 onnseq 8313 uniinqs 8770 en3lplem1 9565 cplem1 9842 fpwwe2lem11 10594 limsupgre 15447 cat1lem 18058 lmcls 23189 conncn 23313 iunconnlem 23314 conncompclo 23322 2ndcsep 23346 lfinpfin 23411 locfincmp 23413 txcls 23491 pthaus 23525 qtopeu 23603 trfbas2 23730 filss 23740 zfbas 23783 fmfnfm 23845 tsmsfbas 24015 restmetu 24458 qdensere 24657 reperflem 24707 reconnlem1 24715 metds0 24739 metnrmlem1a 24747 minveclem3b 25328 ovolicc2lem5 25422 taylfval 26266 wlk1walk 29567 wwlksm1edg 29811 disjif 32507 disjif2 32510 dfufd2lem 33520 subfacp1lem6 35172 erdszelem5 35182 pconnconn 35218 cvmseu 35263 neibastop2lem 36348 topdifinffinlem 37335 sstotbnd3 37770 brtrclfv2 43716 corcltrcl 43728 disjinfi 45186 |
| Copyright terms: Public domain | W3C validator |