Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version |
Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
Ref | Expression |
---|---|
inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | ne0i 4268 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
3 | 1, 2 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-in 3894 df-nul 4257 |
This theorem is referenced by: minel 4399 disji 5057 disjiun 5061 onnseq 8175 uniinqs 8586 en3lplem1 9370 cplem1 9647 fpwwe2lem11 10397 limsupgre 15190 cat1lem 17811 lmcls 22453 conncn 22577 iunconnlem 22578 conncompclo 22586 2ndcsep 22610 lfinpfin 22675 locfincmp 22677 txcls 22755 pthaus 22789 qtopeu 22867 trfbas2 22994 filss 23004 zfbas 23047 fmfnfm 23109 tsmsfbas 23279 restmetu 23726 qdensere 23933 reperflem 23981 reconnlem1 23989 metds0 24013 metnrmlem1a 24021 minveclem3b 24592 ovolicc2lem5 24685 taylfval 25518 wlk1walk 28006 wwlksm1edg 28246 disjif 30917 disjif2 30920 subfacp1lem6 33147 erdszelem5 33157 pconnconn 33193 cvmseu 33238 neibastop2lem 34549 topdifinffinlem 35518 sstotbnd3 35934 brtrclfv2 41335 corcltrcl 41347 disjinfi 42731 |
Copyright terms: Public domain | W3C validator |