Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version |
Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
Ref | Expression |
---|---|
inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | ne0i 4265 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
3 | 1, 2 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: minel 4396 disji 5053 disjiun 5057 onnseq 8146 uniinqs 8544 en3lplem1 9300 cplem1 9578 fpwwe2lem11 10328 limsupgre 15118 cat1lem 17727 lmcls 22361 conncn 22485 iunconnlem 22486 conncompclo 22494 2ndcsep 22518 lfinpfin 22583 locfincmp 22585 txcls 22663 pthaus 22697 qtopeu 22775 trfbas2 22902 filss 22912 zfbas 22955 fmfnfm 23017 tsmsfbas 23187 restmetu 23632 qdensere 23839 reperflem 23887 reconnlem1 23895 metds0 23919 metnrmlem1a 23927 minveclem3b 24497 ovolicc2lem5 24590 taylfval 25423 wlk1walk 27908 wwlksm1edg 28147 disjif 30818 disjif2 30821 subfacp1lem6 33047 erdszelem5 33057 pconnconn 33093 cvmseu 33138 neibastop2lem 34476 topdifinffinlem 35445 sstotbnd3 35861 brtrclfv2 41224 corcltrcl 41236 disjinfi 42620 |
Copyright terms: Public domain | W3C validator |