| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelcm | Structured version Visualization version GIF version | ||
| Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994.) |
| Ref | Expression |
|---|---|
| inelcm | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3927 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | ne0i 4300 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) | |
| 3 | 1, 2 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐵 ∩ 𝐶) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-in 3918 df-nul 4293 |
| This theorem is referenced by: minel 4425 disji 5087 disjiun 5090 onnseq 8290 uniinqs 8747 en3lplem1 9541 cplem1 9818 fpwwe2lem11 10570 limsupgre 15423 cat1lem 18038 lmcls 23222 conncn 23346 iunconnlem 23347 conncompclo 23355 2ndcsep 23379 lfinpfin 23444 locfincmp 23446 txcls 23524 pthaus 23558 qtopeu 23636 trfbas2 23763 filss 23773 zfbas 23816 fmfnfm 23878 tsmsfbas 24048 restmetu 24491 qdensere 24690 reperflem 24740 reconnlem1 24748 metds0 24772 metnrmlem1a 24780 minveclem3b 25361 ovolicc2lem5 25455 taylfval 26299 wlk1walk 29619 wwlksm1edg 29861 disjif 32557 disjif2 32560 dfufd2lem 33513 subfacp1lem6 35165 erdszelem5 35175 pconnconn 35211 cvmseu 35256 neibastop2lem 36341 topdifinffinlem 37328 sstotbnd3 37763 brtrclfv2 43709 corcltrcl 43721 disjinfi 45179 |
| Copyright terms: Public domain | W3C validator |