Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssiun3 Structured version   Visualization version   GIF version

Theorem ssiun3 32487
Description: Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.)
Assertion
Ref Expression
ssiun3 (∀𝑦𝐶𝑥𝐴 𝑦𝐵𝐶 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ssiun3
StepHypRef Expression
1 df-ss 3931 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑦(𝑦𝐶𝑦 𝑥𝐴 𝐵))
2 df-ral 3045 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦(𝑦𝐶𝑦 𝑥𝐴 𝐵))
3 eliun 4959 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
43ralbii 3075 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶𝑥𝐴 𝑦𝐵)
51, 2, 43bitr2ri 300 1 (∀𝑦𝐶𝑥𝐴 𝑦𝐵𝐶 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wral 3044  wrex 3053  wss 3914   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-iun 4957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator