Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssiun3 | Structured version Visualization version GIF version |
Description: Subset equivalence for an indexed union. (Contributed by Thierry Arnoux, 17-Oct-2016.) |
Ref | Expression |
---|---|
ssiun3 | ⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3901 | . 2 ⊢ (𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
2 | df-ral 3067 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
3 | eliun 4923 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 3 | ralbii 3089 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
5 | 1, 2, 4 | 3bitr2ri 303 | 1 ⊢ (∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 ∈ wcel 2111 ∀wral 3062 ∃wrex 3063 ⊆ wss 3881 ∪ ciun 4919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-v 3423 df-in 3888 df-ss 3898 df-iun 4921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |