Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssiun2sf Structured version   Visualization version   GIF version

Theorem ssiun2sf 30899
Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
ssiun2sf.1 𝑥𝐴
ssiun2sf.2 𝑥𝐶
ssiun2sf.3 𝑥𝐷
ssiun2sf.4 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2sf (𝐶𝐴𝐷 𝑥𝐴 𝐵)

Proof of Theorem ssiun2sf
StepHypRef Expression
1 ssiun2sf.2 . . 3 𝑥𝐶
2 ssiun2sf.1 . . . . 5 𝑥𝐴
31, 2nfel 2921 . . . 4 𝑥 𝐶𝐴
4 ssiun2sf.3 . . . . 5 𝑥𝐷
5 nfiu1 4958 . . . . 5 𝑥 𝑥𝐴 𝐵
64, 5nfss 3913 . . . 4 𝑥 𝐷 𝑥𝐴 𝐵
73, 6nfim 1899 . . 3 𝑥(𝐶𝐴𝐷 𝑥𝐴 𝐵)
8 eleq1 2826 . . . 4 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
9 ssiun2sf.4 . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
109sseq1d 3952 . . . 4 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
118, 10imbi12d 345 . . 3 (𝑥 = 𝐶 → ((𝑥𝐴𝐵 𝑥𝐴 𝐵) ↔ (𝐶𝐴𝐷 𝑥𝐴 𝐵)))
12 ssiun2 4977 . . 3 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
131, 7, 11, 12vtoclgf 3503 . 2 (𝐶𝐴 → (𝐶𝐴𝐷 𝑥𝐴 𝐵))
1413pm2.43i 52 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wnfc 2887  wss 3887   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iun 4926
This theorem is referenced by:  iundisj2f  30929  esum2dlem  32060  voliune  32197  volfiniune  32198
  Copyright terms: Public domain W3C validator