Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssiun2sf Structured version   Visualization version   GIF version

Theorem ssiun2sf 32379
Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
ssiun2sf.1 𝑥𝐴
ssiun2sf.2 𝑥𝐶
ssiun2sf.3 𝑥𝐷
ssiun2sf.4 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2sf (𝐶𝐴𝐷 𝑥𝐴 𝐵)

Proof of Theorem ssiun2sf
StepHypRef Expression
1 ssiun2sf.2 . . 3 𝑥𝐶
2 ssiun2sf.1 . . . . 5 𝑥𝐴
31, 2nfel 2914 . . . 4 𝑥 𝐶𝐴
4 ssiun2sf.3 . . . . 5 𝑥𝐷
5 nfiu1 5034 . . . . 5 𝑥 𝑥𝐴 𝐵
64, 5nfss 3974 . . . 4 𝑥 𝐷 𝑥𝐴 𝐵
73, 6nfim 1891 . . 3 𝑥(𝐶𝐴𝐷 𝑥𝐴 𝐵)
8 eleq1 2817 . . . 4 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
9 ssiun2sf.4 . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
109sseq1d 4013 . . . 4 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
118, 10imbi12d 343 . . 3 (𝑥 = 𝐶 → ((𝑥𝐴𝐵 𝑥𝐴 𝐵) ↔ (𝐶𝐴𝐷 𝑥𝐴 𝐵)))
12 ssiun2 5054 . . 3 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
131, 7, 11, 12vtoclgf 3557 . 2 (𝐶𝐴 → (𝐶𝐴𝐷 𝑥𝐴 𝐵))
1413pm2.43i 52 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wnfc 2879  wss 3949   ciun 5000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-v 3475  df-in 3956  df-ss 3966  df-iun 5002
This theorem is referenced by:  iundisj2f  32409  esum2dlem  33752  voliune  33889  volfiniune  33890
  Copyright terms: Public domain W3C validator