Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssiun2sf Structured version   Visualization version   GIF version

Theorem ssiun2sf 31186
Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016.)
Hypotheses
Ref Expression
ssiun2sf.1 𝑥𝐴
ssiun2sf.2 𝑥𝐶
ssiun2sf.3 𝑥𝐷
ssiun2sf.4 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2sf (𝐶𝐴𝐷 𝑥𝐴 𝐵)

Proof of Theorem ssiun2sf
StepHypRef Expression
1 ssiun2sf.2 . . 3 𝑥𝐶
2 ssiun2sf.1 . . . . 5 𝑥𝐴
31, 2nfel 2918 . . . 4 𝑥 𝐶𝐴
4 ssiun2sf.3 . . . . 5 𝑥𝐷
5 nfiu1 4975 . . . . 5 𝑥 𝑥𝐴 𝐵
64, 5nfss 3924 . . . 4 𝑥 𝐷 𝑥𝐴 𝐵
73, 6nfim 1898 . . 3 𝑥(𝐶𝐴𝐷 𝑥𝐴 𝐵)
8 eleq1 2824 . . . 4 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
9 ssiun2sf.4 . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
109sseq1d 3963 . . . 4 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
118, 10imbi12d 344 . . 3 (𝑥 = 𝐶 → ((𝑥𝐴𝐵 𝑥𝐴 𝐵) ↔ (𝐶𝐴𝐷 𝑥𝐴 𝐵)))
12 ssiun2 4994 . . 3 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
131, 7, 11, 12vtoclgf 3512 . 2 (𝐶𝐴 → (𝐶𝐴𝐷 𝑥𝐴 𝐵))
1413pm2.43i 52 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wnfc 2884  wss 3898   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-v 3443  df-in 3905  df-ss 3915  df-iun 4943
This theorem is referenced by:  iundisj2f  31216  esum2dlem  32358  voliune  32495  volfiniune  32496
  Copyright terms: Public domain W3C validator