MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc0 Structured version   Visualization version   GIF version

Theorem suc0 6325
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 6257 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 4083 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 4321 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2770 1 suc ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  c0 4253  {csn 4558  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-suc 6257
This theorem is referenced by:  df1o2  8279  axdc3lem4  10140
  Copyright terms: Public domain W3C validator