MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc0 Structured version   Visualization version   GIF version

Theorem suc0 6391
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 6320 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 4107 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 4343 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2760 1 suc ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896  c0 4282  {csn 4577  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-suc 6320
This theorem is referenced by:  df1o2  8401  axdc3lem4  10355
  Copyright terms: Public domain W3C validator