| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 | ⊢ suc ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6363 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
| 2 | uncom 4138 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
| 3 | un0 4374 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
| 4 | 1, 2, 3 | 3eqtri 2763 | 1 ⊢ suc ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ∅c0 4313 {csn 4606 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-suc 6363 |
| This theorem is referenced by: df1o2 8492 axdc3lem4 10472 |
| Copyright terms: Public domain | W3C validator |