![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6072 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 4050 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 4264 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2823 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∪ cun 3857 ∅c0 4211 {csn 4472 suc csuc 6068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-dif 3862 df-un 3864 df-nul 4212 df-suc 6072 |
This theorem is referenced by: df1o2 7967 axdc3lem4 9721 |
Copyright terms: Public domain | W3C validator |