Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6272 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 4087 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 4324 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2770 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∅c0 4256 {csn 4561 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-suc 6272 |
This theorem is referenced by: df1o2 8304 axdc3lem4 10209 |
Copyright terms: Public domain | W3C validator |