![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6371 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 4154 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 4391 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2762 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3947 ∅c0 4323 {csn 4629 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3952 df-un 3954 df-nul 4324 df-suc 6371 |
This theorem is referenced by: df1o2 8477 axdc3lem4 10452 |
Copyright terms: Public domain | W3C validator |