| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 | ⊢ suc ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6307 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
| 2 | uncom 4103 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
| 3 | un0 4339 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
| 4 | 1, 2, 3 | 3eqtri 2758 | 1 ⊢ suc ∅ = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∅c0 4278 {csn 4571 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-suc 6307 |
| This theorem is referenced by: df1o2 8387 axdc3lem4 10339 |
| Copyright terms: Public domain | W3C validator |