MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc0 Structured version   Visualization version   GIF version

Theorem suc0 6378
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 6307 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 4103 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 4339 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2758 1 suc ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  c0 4278  {csn 4571  suc csuc 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4279  df-suc 6307
This theorem is referenced by:  df1o2  8387  axdc3lem4  10339
  Copyright terms: Public domain W3C validator