MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc0 Structured version   Visualization version   GIF version

Theorem suc0 6434
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0 suc ∅ = {∅}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 6363 . 2 suc ∅ = (∅ ∪ {∅})
2 uncom 4138 . 2 (∅ ∪ {∅}) = ({∅} ∪ ∅)
3 un0 4374 . 2 ({∅} ∪ ∅) = {∅}
41, 2, 33eqtri 2763 1 suc ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3929  c0 4313  {csn 4606  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-suc 6363
This theorem is referenced by:  df1o2  8492  axdc3lem4  10472
  Copyright terms: Public domain W3C validator