Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6219 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 4067 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 4305 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2769 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∪ cun 3864 ∅c0 4237 {csn 4541 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-suc 6219 |
This theorem is referenced by: df1o2 8214 axdc3lem4 10067 |
Copyright terms: Public domain | W3C validator |