![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suc0 | Structured version Visualization version GIF version |
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
Ref | Expression |
---|---|
suc0 | ⊢ suc ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6392 | . 2 ⊢ suc ∅ = (∅ ∪ {∅}) | |
2 | uncom 4168 | . 2 ⊢ (∅ ∪ {∅}) = ({∅} ∪ ∅) | |
3 | un0 4400 | . 2 ⊢ ({∅} ∪ ∅) = {∅} | |
4 | 1, 2, 3 | 3eqtri 2767 | 1 ⊢ suc ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∅c0 4339 {csn 4631 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-suc 6392 |
This theorem is referenced by: df1o2 8512 axdc3lem4 10491 pw2bday 28433 |
Copyright terms: Public domain | W3C validator |