![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucel | Structured version Visualization version GIF version |
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
sucel | ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3231 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴) | |
2 | dfcleq 2728 | . . . 4 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴)) | |
3 | vex 3482 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsuc 6456 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
5 | 4 | bibi2i 337 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
6 | 5 | albii 1816 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
7 | 2, 6 | bitri 275 | . . 3 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
8 | 7 | rexbii 3092 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
9 | 1, 8 | bitri 275 | 1 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 df-un 3968 df-sn 4632 df-suc 6392 |
This theorem is referenced by: axinf2 9678 zfinf2 9680 |
Copyright terms: Public domain | W3C validator |