MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucel Structured version   Visualization version   GIF version

Theorem sucel 6460
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem sucel
StepHypRef Expression
1 risset 3231 . 2 (suc 𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = suc 𝐴)
2 dfcleq 2728 . . . 4 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴))
3 vex 3482 . . . . . . 7 𝑦 ∈ V
43elsuc 6456 . . . . . 6 (𝑦 ∈ suc 𝐴 ↔ (𝑦𝐴𝑦 = 𝐴))
54bibi2i 337 . . . . 5 ((𝑦𝑥𝑦 ∈ suc 𝐴) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
65albii 1816 . . . 4 (∀𝑦(𝑦𝑥𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
72, 6bitri 275 . . 3 (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
87rexbii 3092 . 2 (∃𝑥𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
91, 8bitri 275 1 (suc 𝐴𝐵 ↔ ∃𝑥𝐵𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1535   = wceq 1537  wcel 2106  wrex 3068  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-v 3480  df-un 3968  df-sn 4632  df-suc 6392
This theorem is referenced by:  axinf2  9678  zfinf2  9680
  Copyright terms: Public domain W3C validator