MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6462
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4722 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4178 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6392 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4400 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2744 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2800 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  c0 4339  {csn 4631  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-suc 6392
This theorem is referenced by:  nsuceq0  6469  sucon  7823  ordsuc  7833  ordsucOLD  7834  sucprcreg  9639  suc11reg  9657
  Copyright terms: Public domain W3C validator