Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4658 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 2 | uneq2d 4101 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
4 | df-suc 6269 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | un0 4329 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 5 | eqcomi 2748 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
7 | 3, 4, 6 | 3eqtr4g 2804 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 ∅c0 4261 {csn 4566 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-suc 6269 |
This theorem is referenced by: nsuceq0 6343 sucon 7643 ordsuc 7649 sucprcreg 9321 suc11reg 9338 |
Copyright terms: Public domain | W3C validator |