![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4722 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 2 | uneq2d 4178 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
4 | df-suc 6392 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | un0 4400 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 5 | eqcomi 2744 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
7 | 3, 4, 6 | 3eqtr4g 2800 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∅c0 4339 {csn 4631 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-suc 6392 |
This theorem is referenced by: nsuceq0 6469 sucon 7823 ordsuc 7833 ordsucOLD 7834 sucprcreg 9639 suc11reg 9657 |
Copyright terms: Public domain | W3C validator |