| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version | ||
| Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4665 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 3 | 2 | uneq2d 4113 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
| 4 | df-suc 6307 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | un0 4339 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 6 | 5 | eqcomi 2740 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
| 7 | 3, 4, 6 | 3eqtr4g 2791 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4278 {csn 4571 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-suc 6307 |
| This theorem is referenced by: nsuceq0 6386 sucon 7731 ordsuc 7739 sucprcreg 9485 suc11reg 9504 |
| Copyright terms: Public domain | W3C validator |