MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6437
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4720 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 215 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4162 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6367 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4389 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2741 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2797 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cun 3945  c0 4321  {csn 4627  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3950  df-un 3952  df-nul 4322  df-sn 4628  df-suc 6367
This theorem is referenced by:  nsuceq0  6444  sucon  7787  ordsuc  7797  ordsucOLD  7798  sucprcreg  9592  suc11reg  9610
  Copyright terms: Public domain W3C validator