MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6356
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4657 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 215 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4103 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6287 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4330 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2745 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2801 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  cun 3890  c0 4262  {csn 4565  suc csuc 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-dif 3895  df-un 3897  df-nul 4263  df-sn 4566  df-suc 6287
This theorem is referenced by:  nsuceq0  6363  sucon  7685  ordsuc  7693  sucprcreg  9408  suc11reg  9425
  Copyright terms: Public domain W3C validator