MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6392
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4671 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4117 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6320 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4343 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2742 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2793 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4577  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-sn 4578  df-suc 6320
This theorem is referenced by:  nsuceq0  6399  sucon  7745  ordsuc  7753  sucprcreg  9501  suc11reg  9520
  Copyright terms: Public domain W3C validator