MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6430
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4693 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4143 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6358 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4369 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2744 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2795 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  c0 4308  {csn 4601  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-suc 6358
This theorem is referenced by:  nsuceq0  6437  sucon  7797  ordsuc  7807  ordsucOLD  7808  sucprcreg  9615  suc11reg  9633
  Copyright terms: Public domain W3C validator