MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6471
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4742 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4191 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6401 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4417 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2749 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2805 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  c0 4352  {csn 4648  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-suc 6401
This theorem is referenced by:  nsuceq0  6478  sucon  7839  ordsuc  7849  ordsucOLD  7850  sucprcreg  9670  suc11reg  9688
  Copyright terms: Public domain W3C validator