![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4742 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 2 | uneq2d 4191 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
4 | df-suc 6401 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | un0 4417 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 5 | eqcomi 2749 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
7 | 3, 4, 6 | 3eqtr4g 2805 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {csn 4648 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 |
This theorem is referenced by: nsuceq0 6478 sucon 7839 ordsuc 7849 ordsucOLD 7850 sucprcreg 9670 suc11reg 9688 |
Copyright terms: Public domain | W3C validator |