MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucprc Structured version   Visualization version   GIF version

Theorem sucprc 6410
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 snprc 4681 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
32uneq2d 4131 . 2 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
4 df-suc 6338 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 un0 4357 . . 3 (𝐴 ∪ ∅) = 𝐴
65eqcomi 2738 . 2 𝐴 = (𝐴 ∪ ∅)
73, 4, 63eqtr4g 2789 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  c0 4296  {csn 4589  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-sn 4590  df-suc 6338
This theorem is referenced by:  nsuceq0  6417  sucon  7779  ordsuc  7788  ordsucOLD  7789  sucprcreg  9554  suc11reg  9572
  Copyright terms: Public domain W3C validator