Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucprc | Structured version Visualization version GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4654 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 2 | uneq2d 4097 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
4 | df-suc 6266 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | un0 4325 | . . 3 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 5 | eqcomi 2747 | . 2 ⊢ 𝐴 = (𝐴 ∪ ∅) |
7 | 3, 4, 6 | 3eqtr4g 2803 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3430 ∪ cun 3885 ∅c0 4257 {csn 4562 suc csuc 6262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3432 df-dif 3890 df-un 3892 df-nul 4258 df-sn 4563 df-suc 6266 |
This theorem is referenced by: nsuceq0 6340 sucon 7644 ordsuc 7652 sucprcreg 9348 suc11reg 9365 |
Copyright terms: Public domain | W3C validator |