MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem4 Structured version   Visualization version   GIF version

Theorem axdc3lem4 9728
Description: Lemma for axdc3 9729. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9721 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9721 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that 𝑆 is nonempty, and that 𝐺 always maps to a nonempty subset of 𝑆, so that we can apply axdc2 9724. See axdc3lem2 9726 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem4.1 𝐴 ∈ V
axdc3lem4.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem4.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem4 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,𝑘   𝐴,𝑛,𝑥,𝑘,𝑠   𝐶,𝑔,𝑘   𝐶,𝑛,𝑠   𝑔,𝐹,𝑘   𝑛,𝐹,𝑥,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠,𝑥   𝑦,𝑆,𝑥   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑆(𝑔,𝑛)   𝐹(𝑦)   𝐺(𝑥,𝑦,𝑔,𝑛,𝑠)

Proof of Theorem axdc3lem4
Dummy variables 𝑚 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7464 . . . . . 6 ∅ ∈ ω
2 eqid 2797 . . . . . . . . . 10 {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}
3 fsng 6769 . . . . . . . . . . 11 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
41, 3mpan 686 . . . . . . . . . 10 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:{∅}⟶{𝐶} ↔ {⟨∅, 𝐶⟩} = {⟨∅, 𝐶⟩}))
52, 4mpbiri 259 . . . . . . . . 9 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶{𝐶})
6 snssi 4654 . . . . . . . . 9 (𝐶𝐴 → {𝐶} ⊆ 𝐴)
75, 6fssd 6403 . . . . . . . 8 (𝐶𝐴 → {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
8 suc0 6147 . . . . . . . . 9 suc ∅ = {∅}
98feq2i 6381 . . . . . . . 8 ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ↔ {⟨∅, 𝐶⟩}:{∅}⟶𝐴)
107, 9sylibr 235 . . . . . . 7 (𝐶𝐴 → {⟨∅, 𝐶⟩}:suc ∅⟶𝐴)
11 fvsng 6812 . . . . . . . 8 ((∅ ∈ ω ∧ 𝐶𝐴) → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
121, 11mpan 686 . . . . . . 7 (𝐶𝐴 → ({⟨∅, 𝐶⟩}‘∅) = 𝐶)
13 ral0 4376 . . . . . . . 8 𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))
1413a1i 11 . . . . . . 7 (𝐶𝐴 → ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))
1510, 12, 143jca 1121 . . . . . 6 (𝐶𝐴 → ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
16 suceq 6138 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
1716feq2d 6375 . . . . . . . 8 (𝑚 = ∅ → ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ↔ {⟨∅, 𝐶⟩}:suc ∅⟶𝐴))
18 raleq 3367 . . . . . . . 8 (𝑚 = ∅ → (∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)) ↔ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
1917, 183anbi13d 1430 . . . . . . 7 (𝑚 = ∅ → (({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))) ↔ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))))
2019rspcev 3561 . . . . . 6 ((∅ ∈ ω ∧ ({⟨∅, 𝐶⟩}:suc ∅⟶𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘 ∈ ∅ ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘)))) → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
211, 15, 20sylancr 587 . . . . 5 (𝐶𝐴 → ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
22 axdc3lem4.1 . . . . . 6 𝐴 ∈ V
23 axdc3lem4.2 . . . . . 6 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
24 snex 5230 . . . . . 6 {⟨∅, 𝐶⟩} ∈ V
2522, 23, 24axdc3lem3 9727 . . . . 5 ({⟨∅, 𝐶⟩} ∈ 𝑆 ↔ ∃𝑚 ∈ ω ({⟨∅, 𝐶⟩}:suc 𝑚𝐴 ∧ ({⟨∅, 𝐶⟩}‘∅) = 𝐶 ∧ ∀𝑘𝑚 ({⟨∅, 𝐶⟩}‘suc 𝑘) ∈ (𝐹‘({⟨∅, 𝐶⟩}‘𝑘))))
2621, 25sylibr 235 . . . 4 (𝐶𝐴 → {⟨∅, 𝐶⟩} ∈ 𝑆)
2726ne0d 4227 . . 3 (𝐶𝐴𝑆 ≠ ∅)
2822, 23axdc3lem 9725 . . . . . . 7 𝑆 ∈ V
29 ssrab2 3983 . . . . . . 7 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ⊆ 𝑆
3028, 29elpwi2 5147 . . . . . 6 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆
3130a1i 11 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ 𝒫 𝑆)
32 vex 3443 . . . . . . . . . 10 𝑥 ∈ V
3322, 23, 32axdc3lem3 9727 . . . . . . . . 9 (𝑥𝑆 ↔ ∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
34 simp2 1130 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → 𝑥:suc 𝑚𝐴)
35 vex 3443 . . . . . . . . . . . . . . . . . . . . . 22 𝑚 ∈ V
3635sucid 6152 . . . . . . . . . . . . . . . . . . . . 21 𝑚 ∈ suc 𝑚
37 ffvelrn 6721 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:suc 𝑚𝐴𝑚 ∈ suc 𝑚) → (𝑥𝑚) ∈ 𝐴)
3836, 37mpan2 687 . . . . . . . . . . . . . . . . . . . 20 (𝑥:suc 𝑚𝐴 → (𝑥𝑚) ∈ 𝐴)
39 ffvelrn 6721 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑥𝑚) ∈ 𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
4038, 39sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}))
41 eldifn 4031 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ¬ (𝐹‘(𝑥𝑚)) ∈ {∅})
42 fvex 6558 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹‘(𝑥𝑚)) ∈ V
4342elsn 4493 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) = ∅)
4443necon3bbii 3033 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ (𝐹‘(𝑥𝑚)) ≠ ∅)
45 n0 4236 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑥𝑚)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4644, 45bitri 276 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝐹‘(𝑥𝑚)) ∈ {∅} ↔ ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4741, 46sylib 219 . . . . . . . . . . . . . . . . . . 19 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
4840, 47syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)))
49 simp32 1203 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → 𝑥:suc 𝑚𝐴)
50 eldifi 4030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ (𝒫 𝐴 ∖ {∅}) → (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴)
51 elelpwi 4472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴) → 𝑧𝐴)
5251expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝑥𝑚)) ∈ 𝒫 𝐴 → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
5340, 50, 523syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → 𝑧𝐴))
54 peano2 7465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
55543ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → suc 𝑚 ∈ ω)
56553ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → suc 𝑚 ∈ ω)
57 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑥:suc 𝑚𝐴)
5832dmex 7479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 dom 𝑥 ∈ V
59 vex 3443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑧 ∈ V
60 eqid 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}
61 fsng 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → ({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ↔ {⟨dom 𝑥, 𝑧⟩} = {⟨dom 𝑥, 𝑧⟩}))
6260, 61mpbiri 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((dom 𝑥 ∈ V ∧ 𝑧 ∈ V) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧})
6358, 59, 62mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧}
64 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
6564snssd 4655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {𝑧} ⊆ 𝐴)
66 fss 6402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (({⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶{𝑧} ∧ {𝑧} ⊆ 𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
6763, 65, 66sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → {⟨dom 𝑥, 𝑧⟩}:{dom 𝑥}⟶𝐴)
68 fdm 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → dom 𝑥 = suc 𝑚)
6954adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → suc 𝑚 ∈ ω)
70 eleq1 2872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω))
7269, 71mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 ∈ ω)
73 nnord 7451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 ∈ ω → Ord dom 𝑥)
74 ordirr 6091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (Ord dom 𝑥 → ¬ dom 𝑥 ∈ dom 𝑥)
7572, 73, 743syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ dom 𝑥)
76 eleq2 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (dom 𝑥 = suc 𝑚 → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
7776adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚))
7875, 77mtbid 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ¬ dom 𝑥 ∈ suc 𝑚)
79 disjsn 4560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((suc 𝑚 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ suc 𝑚)
8078, 79sylibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8168, 80sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8281adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∩ {dom 𝑥}) = ∅)
8357, 67, 82fun2d 6417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴)
84 sneq 4488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (dom 𝑥 = suc 𝑚 → {dom 𝑥} = {suc 𝑚})
8584uneq2d 4066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = (suc 𝑚 ∪ {suc 𝑚}))
86 df-suc 6079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 suc suc 𝑚 = (suc 𝑚 ∪ {suc 𝑚})
8785, 86syl6eqr 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 = suc 𝑚 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
8868, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
8988ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (suc 𝑚 ∪ {dom 𝑥}) = suc suc 𝑚)
9089feq2d 6375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):(suc 𝑚 ∪ {dom 𝑥})⟶𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9183, 90mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) ∧ 𝑧𝐴) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
9291ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9392adantrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
9493a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
9594ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
96953adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)))
97963imp 1104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴)
98 ffun 6392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥:suc 𝑚𝐴 → Fun 𝑥)
9998adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun 𝑥)
10058, 59funsn 6284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Fun {⟨dom 𝑥, 𝑧⟩}
10199, 100jctir 521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}))
10259dmsnop 5955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 dom {⟨dom 𝑥, 𝑧⟩} = {dom 𝑥}
103102ineq2i 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∩ {dom 𝑥})
104 disjsn 4560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((dom 𝑥 ∩ {dom 𝑥}) = ∅ ↔ ¬ dom 𝑥 ∈ dom 𝑥)
10575, 104sylibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ {dom 𝑥}) = ∅)
106103, 105syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
10768, 106sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅)
108 funun 6277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((Fun 𝑥 ∧ Fun {⟨dom 𝑥, 𝑧⟩}) ∧ (dom 𝑥 ∩ dom {⟨dom 𝑥, 𝑧⟩}) = ∅) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
109101, 107, 108syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
110 ssun1 4075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
111110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
112 nnord 7451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑚 ∈ ω → Ord 𝑚)
113 0elsuc 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (Ord 𝑚 → ∅ ∈ suc 𝑚)
114112, 113syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑚 ∈ ω → ∅ ∈ suc 𝑚)
115114adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ suc 𝑚)
11668eleq2d 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥:suc 𝑚𝐴 → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
117116adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚))
118115, 117mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ∅ ∈ dom 𝑥)
119 funssfv 6566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ ∅ ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
120109, 111, 118, 119syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = (𝑥‘∅))
121120eqeq1d 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
122121ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
1231223adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ↔ (𝑥‘∅) = 𝐶))
124123biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑥‘∅) = 𝐶) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
125124adantrl 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
1261253adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶)
127 nfra1 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))
128 nfv 1896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑥:suc 𝑚𝐴
129 nfv 1896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑘 𝑚 ∈ ω
130127, 128, 129nf3an 1887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)
131 nfv 1896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘 𝑧 ∈ (𝐹‘(𝑥𝑚))
132 nfv 1896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑘(𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)
133130, 131, 132nf3an 1887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶))
134 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑘 ∈ suc 𝑚)
135 elsuci 6139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 ∈ suc 𝑚 → (𝑘𝑚𝑘 = 𝑚))
136 rsp 3174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑘𝑚 → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
137136impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑘𝑚 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
138137ad2ant2lr 744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚)) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
1391383adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)))
140109adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
141110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
142 ordsucelsuc 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (Ord 𝑚 → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
143112, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (𝑚 ∈ ω → (𝑘𝑚 ↔ suc 𝑘 ∈ suc 𝑚))
144143biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘𝑚) → suc 𝑘 ∈ suc 𝑚)
145 eleq2 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑚 → (suc 𝑘 ∈ dom 𝑥 ↔ suc 𝑘 ∈ suc 𝑚))
146145biimparc 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((suc 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom 𝑥)
147144, 68, 146syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom 𝑥)
148 funssfv 6566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
149140, 141, 147, 148syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1501493adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = (𝑥‘suc 𝑘))
1511093adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
152110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
153 eleq2 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (dom 𝑥 = suc 𝑚 → (𝑘 ∈ dom 𝑥𝑘 ∈ suc 𝑚))
154153biimparc 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚) → 𝑘 ∈ dom 𝑥)
15568, 154sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
1561553adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → 𝑘 ∈ dom 𝑥)
157 funssfv 6566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑥 ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ 𝑘 ∈ dom 𝑥) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
158151, 152, 156, 157syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
1591583adant1r 1170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
160159fveq2d 6549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑘)))
161150, 160eleq12d 2879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
1621613adant2l 1171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))))
163139, 162mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
164163a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑚 ∈ ω ∧ 𝑘𝑚) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
1651643expib 1115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑚 ∈ ω ∧ 𝑘𝑚) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
166165expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
1671093adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
168 ssun2 4076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})
169168a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
170 suceq 6138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 (𝑘 = 𝑚 → suc 𝑘 = suc 𝑚)
171170eqeq2d 2807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑘 = 𝑚 → (dom 𝑥 = suc 𝑘 ↔ dom 𝑥 = suc 𝑚))
172171biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
17358snid 4512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 dom 𝑥 ∈ {dom 𝑥}
174173, 102eleqtrri 2884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 dom 𝑥 ∈ dom {⟨dom 𝑥, 𝑧⟩}
175172, 174syl6eqelr 2894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
17668, 175sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
1771763adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩})
178 funssfv 6566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((Fun (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ {⟨dom 𝑥, 𝑧⟩} ⊆ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∧ suc 𝑘 ∈ dom {⟨dom 𝑥, 𝑧⟩}) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
179167, 169, 177, 178syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
1801723adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → dom 𝑥 = suc 𝑘)
18158, 59fvsn 6813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = 𝑧
182 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘dom 𝑥) = ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘))
183181, 182syl5reqr 2848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (dom 𝑥 = suc 𝑘 → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
184180, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑘 = 𝑚𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
18568, 184syl3an3 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩}‘suc 𝑘) = 𝑧)
186179, 185eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑘 = 𝑚𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1871863expa 1111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1881873adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) = 𝑧)
1891583adant1l 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑘))
190 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑘 = 𝑚 → (𝑥𝑘) = (𝑥𝑚))
191190adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑘 = 𝑚𝑚 ∈ ω) → (𝑥𝑘) = (𝑥𝑚))
1921913ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝑥𝑘) = (𝑥𝑚))
193189, 192eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘) = (𝑥𝑚))
194193fveq2d 6549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) = (𝐹‘(𝑥𝑚)))
195188, 194eleq12d 2879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ 𝑘 ∈ suc 𝑚𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
1961953adant2l 1171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ 𝑧 ∈ (𝐹‘(𝑥𝑚))))
197196biimprd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝑘 = 𝑚𝑚 ∈ ω) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
1981973expib 1115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑘 = 𝑚𝑚 ∈ ω) → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
199198ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑘 = 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
200166, 199jaoi 852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘𝑚𝑘 = 𝑚) → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
201135, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
202201com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑘 ∈ suc 𝑚 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
203134, 202mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) ∧ 𝑥:suc 𝑚𝐴) → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
204203ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑘 ∈ suc 𝑚) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))))
205204expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ suc 𝑚 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))))
2062053impd 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑘 ∈ suc 𝑚 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
207206impd 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ suc 𝑚 → (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
208207com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚))) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
2092083adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑘 ∈ suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
210133, 209ralrimi 3185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))
211 suceq 6138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑝 = suc 𝑚 → suc 𝑝 = suc suc 𝑚)
212211feq2d 6375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ↔ (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴))
213 raleq 3367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑝 = suc 𝑚 → (∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)) ↔ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
214212, 2133anbi13d 1430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑝 = suc 𝑚 → (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))) ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))))
215214rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((suc 𝑚 ∈ ω ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc suc 𝑚𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘 ∈ suc 𝑚((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘)))) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
21656, 97, 126, 210, 215syl13anc 1365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
217 snex 5230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} ∈ V
21832, 217unex 7333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ V
21922, 23, 218axdc3lem3 9727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ↔ ∃𝑝 ∈ ω ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}):suc 𝑝𝐴 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘∅) = 𝐶 ∧ ∀𝑘𝑝 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘suc 𝑘) ∈ (𝐹‘((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩})‘𝑘))))
220216, 219sylibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) ∧ 𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2212203coml 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
2222213exp 1112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑧𝐴 ∧ (𝑥‘∅) = 𝐶) → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
223222expd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝐹‘(𝑥𝑚)) → (𝑧𝐴 → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
22453, 223sylcom 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))))
2252243impd 1341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
226225ex 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑥:suc 𝑚𝐴 → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
227226com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥:suc 𝑚𝐴 → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)))
22849, 227mpdi 45 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆))
229228imp 407 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆)
230 resundir 5756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥))
231 frel 6394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥:suc 𝑚𝐴 → Rel 𝑥)
232 resdm 5785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Rel 𝑥 → (𝑥 ↾ dom 𝑥) = 𝑥)
233231, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥:suc 𝑚𝐴 → (𝑥 ↾ dom 𝑥) = 𝑥)
234233adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → (𝑥 ↾ dom 𝑥) = 𝑥)
23568, 72sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → dom 𝑥 ∈ ω)
23673, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (dom 𝑥 ∈ ω → ¬ dom 𝑥 ∈ dom 𝑥)
237 incom 4105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({dom 𝑥} ∩ dom 𝑥) = (dom 𝑥 ∩ {dom 𝑥})
238237eqeq1i 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ (dom 𝑥 ∩ {dom 𝑥}) = ∅)
23958, 59fnsn 6289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥}
240 fnresdisj 6344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ({⟨dom 𝑥, 𝑧⟩} Fn {dom 𝑥} → (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅))
241239, 240ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({dom 𝑥} ∩ dom 𝑥) = ∅ ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
242238, 241, 1043bitr3ri 303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (¬ dom 𝑥 ∈ dom 𝑥 ↔ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
243236, 242sylib 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (dom 𝑥 ∈ ω → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
244235, 243syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥) = ∅)
245234, 244uneq12d 4067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = (𝑥 ∪ ∅))
246 un0 4270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∪ ∅) = 𝑥
247245, 246syl6eq 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ↾ dom 𝑥) ∪ ({⟨dom 𝑥, 𝑧⟩} ↾ dom 𝑥)) = 𝑥)
248230, 247syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ω ∧ 𝑥:suc 𝑚𝐴) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
249248ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2502493adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
2512503ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω)) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
252251adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)
253102uneq2i 4063 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ {dom 𝑥})
254 dmun 5672 . . . . . . . . . . . . . . . . . . . . . . . 24 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = (dom 𝑥 ∪ dom {⟨dom 𝑥, 𝑧⟩})
255 df-suc 6079 . . . . . . . . . . . . . . . . . . . . . . . 24 suc dom 𝑥 = (dom 𝑥 ∪ {dom 𝑥})
256253, 254, 2553eqtr4i 2831 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥
257252, 256jctil 520 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
258 dmeq 5665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → dom 𝑦 = dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}))
259258eqeq1d 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (dom 𝑦 = suc dom 𝑥 ↔ dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥))
260 reseq1 5735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → (𝑦 ↾ dom 𝑥) = ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥))
261260eqeq1d 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥))
262259, 261anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)))
263262rspcev 3561 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ∈ 𝑆 ∧ (dom (𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) = suc dom 𝑥 ∧ ((𝑥 ∪ {⟨dom 𝑥, 𝑧⟩}) ↾ dom 𝑥) = 𝑥)) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
264229, 257, 263syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑧 ∈ (𝐹‘(𝑥𝑚)) ∧ (𝑥‘∅) = 𝐶 ∧ (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω))) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
2652643exp2 1347 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
266265exlimdv 1915 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
267266adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → (∃𝑧 𝑧 ∈ (𝐹‘(𝑥𝑚)) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))))
26848, 267mpd 15 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
269268com3r 87 . . . . . . . . . . . . . . . 16 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥:suc 𝑚𝐴) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
27034, 269mpan2d 690 . . . . . . . . . . . . . . 15 ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ((𝑥‘∅) = 𝐶 → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
271270com3r 87 . . . . . . . . . . . . . 14 ((𝑥‘∅) = 𝐶 → ((∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) ∧ 𝑥:suc 𝑚𝐴𝑚 ∈ ω) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
2722713expd 1346 . . . . . . . . . . . . 13 ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑥:suc 𝑚𝐴 → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
273272com3r 87 . . . . . . . . . . . 12 (𝑥:suc 𝑚𝐴 → ((𝑥‘∅) = 𝐶 → (∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘)) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))))
2742733imp 1104 . . . . . . . . . . 11 ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝑚 ∈ ω → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
275274com12 32 . . . . . . . . . 10 (𝑚 ∈ ω → ((𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))))
276275rexlimiv 3245 . . . . . . . . 9 (∃𝑚 ∈ ω (𝑥:suc 𝑚𝐴 ∧ (𝑥‘∅) = 𝐶 ∧ ∀𝑘𝑚 (𝑥‘suc 𝑘) ∈ (𝐹‘(𝑥𝑘))) → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
27733, 276sylbi 218 . . . . . . . 8 (𝑥𝑆 → (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)))
278277impcom 408 . . . . . . 7 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
279 rabn0 4265 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅ ↔ ∃𝑦𝑆 (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥))
280278, 279sylibr 235 . . . . . 6 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
28128rabex 5133 . . . . . . . 8 {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ V
282281elsn 4493 . . . . . . 7 ({𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = ∅)
283282necon3bbii 3033 . . . . . 6 (¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅} ↔ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ≠ ∅)
284280, 283sylibr 235 . . . . 5 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → ¬ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ {∅})
28531, 284eldifd 3876 . . . 4 ((𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑥𝑆) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} ∈ (𝒫 𝑆 ∖ {∅}))
286 axdc3lem4.3 . . . 4 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
287285, 286fmptd 6748 . . 3 (𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅}) → 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅}))
28828axdc2 9724 . . 3 ((𝑆 ≠ ∅ ∧ 𝐺:𝑆⟶(𝒫 𝑆 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
28927, 287, 288syl2an 595 . 2 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))))
29022, 23, 286axdc3lem2 9726 . 2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
291289, 290syl 17 1 ((𝐶𝐴𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1525  wex 1765  wcel 2083  {cab 2777  wne 2986  wral 3107  wrex 3108  {crab 3111  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  𝒫 cpw 4459  {csn 4478  cop 4484  cmpt 5047  dom cdm 5450  cres 5452  Rel wrel 5455  Ord word 6072  suc csuc 6075  Fun wfun 6226   Fn wfn 6227  wf 6228  cfv 6232  ωcom 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-dc 9721
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-1o 7960
This theorem is referenced by:  axdc3  9729
  Copyright terms: Public domain W3C validator