| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidALT | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 44866 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sucidALT.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucidALT | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidALT.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 4629 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | elun1 4148 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) |
| 5 | df-suc 6341 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 5 | equncomi 4126 | . 2 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
| 7 | 4, 6 | eleqtrri 2828 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-suc 6341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |