![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidALT | Structured version Visualization version GIF version |
Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 44841 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sucidALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidALT | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidALT.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4684 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun1 4205 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) |
5 | df-suc 6401 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | equncomi 4183 | . 2 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
7 | 4, 6 | eleqtrri 2843 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-suc 6401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |