Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidALT | Structured version Visualization version GIF version |
Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 41977 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sucidALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidALT | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidALT.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4561 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun1 4083 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) |
5 | df-suc 6179 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | equncomi 4062 | . 2 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
7 | 4, 6 | eleqtrri 2851 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 {csn 4525 suc csuc 6175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-suc 6179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |