| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidALT | Structured version Visualization version GIF version | ||
| Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 45026 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sucidALT.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucidALT | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidALT.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 4616 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | elun1 4131 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) |
| 5 | df-suc 6320 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 5 | equncomi 4109 | . 2 ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) |
| 7 | 4, 6 | eleqtrri 2832 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4577 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4578 df-suc 6320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |