Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidALT Structured version   Visualization version   GIF version

Theorem sucidALT 44895
Description: A set belongs to its successor. This proof was automatically derived from sucidALTVD 44894 using translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidALT.1 𝐴 ∈ V
Assertion
Ref Expression
sucidALT 𝐴 ∈ suc 𝐴

Proof of Theorem sucidALT
StepHypRef Expression
1 sucidALT.1 . . . 4 𝐴 ∈ V
21snid 4638 . . 3 𝐴 ∈ {𝐴}
3 elun1 4157 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴))
42, 3ax-mp 5 . 2 𝐴 ∈ ({𝐴} ∪ 𝐴)
5 df-suc 6358 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
65equncomi 4135 . 2 suc 𝐴 = ({𝐴} ∪ 𝐴)
74, 6eleqtrri 2833 1 𝐴 ∈ suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3459  cun 3924  {csn 4601  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-ss 3943  df-sn 4602  df-suc 6358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator