![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidVD | Structured version Visualization version GIF version |
Description: A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6446 is sucidVD 44098 without virtual deductions and was automatically
derived from sucidVD 44098.
|
Ref | Expression |
---|---|
sucidVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidVD | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4664 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun2 4177 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴})) | |
4 | 2, 3 | e0a 43998 | . 2 ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) |
5 | df-suc 6370 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 4, 5 | eleqtrri 2831 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 {csn 4628 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-suc 6370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |