Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidVD | Structured version Visualization version GIF version |
Description: A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6377 is sucidVD 42802 without virtual deductions and was automatically
derived from sucidVD 42802.
|
Ref | Expression |
---|---|
sucidVD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucidVD | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snid 4608 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
3 | elun2 4123 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴})) | |
4 | 2, 3 | e0a 42702 | . 2 ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) |
5 | df-suc 6302 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 4, 5 | eleqtrri 2836 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 {csn 4572 suc csuc 6298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3902 df-in 3904 df-ss 3914 df-sn 4573 df-suc 6302 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |