Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidVD Structured version   Visualization version   GIF version

Theorem sucidVD 44870
Description: A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 6468 is sucidVD 44870 without virtual deductions and was automatically derived from sucidVD 44870.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ (𝐴 ∪ {𝐴})
4:: suc 𝐴 = (𝐴 ∪ {𝐴})
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidVD.1 𝐴 ∈ V
Assertion
Ref Expression
sucidVD 𝐴 ∈ suc 𝐴

Proof of Theorem sucidVD
StepHypRef Expression
1 sucidVD.1 . . . 4 𝐴 ∈ V
21snid 4667 . . 3 𝐴 ∈ {𝐴}
3 elun2 4193 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴}))
42, 3e0a 44770 . 2 𝐴 ∈ (𝐴 ∪ {𝐴})
5 df-suc 6392 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
64, 5eleqtrri 2838 1 𝐴 ∈ suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  cun 3961  {csn 4631  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator