| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidVD | Structured version Visualization version GIF version | ||
Description: A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6419 is sucidVD 44868 without virtual deductions and was automatically
derived from sucidVD 44868.
|
| Ref | Expression |
|---|---|
| sucidVD.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucidVD | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 4629 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | elun2 4149 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴})) | |
| 4 | 2, 3 | e0a 44768 | . 2 ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) |
| 5 | df-suc 6341 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 4, 5 | eleqtrri 2828 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-suc 6341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |