| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucidVD | Structured version Visualization version GIF version | ||
Description: A set belongs to its successor. The following User's Proof is a
Virtual Deduction proof completed automatically by the tools
program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sucid 6416 is sucidVD 44861 without virtual deductions and was automatically
derived from sucidVD 44861.
|
| Ref | Expression |
|---|---|
| sucidVD.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucidVD | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidVD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snid 4626 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 3 | elun2 4146 | . . 3 ⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ (𝐴 ∪ {𝐴})) | |
| 4 | 2, 3 | e0a 44761 | . 2 ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) |
| 5 | df-suc 6338 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 4, 5 | eleqtrri 2827 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |