MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq3 Structured version   Visualization version   GIF version

Theorem supeq3 9518
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))

Proof of Theorem supeq3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5168 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
21notbid 318 . . . . . 6 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑆𝑦))
32ralbidv 3184 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑆𝑦))
4 breq 5168 . . . . . . 7 (𝑅 = 𝑆 → (𝑦𝑅𝑥𝑦𝑆𝑥))
5 breq 5168 . . . . . . . 8 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
65rexbidv 3185 . . . . . . 7 (𝑅 = 𝑆 → (∃𝑧𝐴 𝑦𝑅𝑧 ↔ ∃𝑧𝐴 𝑦𝑆𝑧))
74, 6imbi12d 344 . . . . . 6 (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
87ralbidv 3184 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
93, 8anbi12d 631 . . . 4 (𝑅 = 𝑆 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))))
109rabbidv 3451 . . 3 (𝑅 = 𝑆 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
1110unieqd 4944 . 2 (𝑅 = 𝑆 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
12 df-sup 9511 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
13 df-sup 9511 . 2 sup(𝐴, 𝐵, 𝑆) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))}
1411, 12, 133eqtr4g 2805 1 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wral 3067  wrex 3076  {crab 3443   cuni 4931   class class class wbr 5166  supcsup 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-ss 3993  df-uni 4932  df-br 5167  df-sup 9511
This theorem is referenced by:  infeq3  9549
  Copyright terms: Public domain W3C validator