MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq123d Structured version   Visualization version   GIF version

Theorem supeq123d 9481
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
supeq123d.a (𝜑𝐴 = 𝐷)
supeq123d.b (𝜑𝐵 = 𝐸)
supeq123d.c (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
supeq123d (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))

Proof of Theorem supeq123d
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supeq123d.b . . . 4 (𝜑𝐵 = 𝐸)
2 supeq123d.a . . . . . 6 (𝜑𝐴 = 𝐷)
3 supeq123d.c . . . . . . . 8 (𝜑𝐶 = 𝐹)
43breqd 5163 . . . . . . 7 (𝜑 → (𝑥𝐶𝑦𝑥𝐹𝑦))
54notbid 317 . . . . . 6 (𝜑 → (¬ 𝑥𝐶𝑦 ↔ ¬ 𝑥𝐹𝑦))
62, 5raleqbidv 3340 . . . . 5 (𝜑 → (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ↔ ∀𝑦𝐷 ¬ 𝑥𝐹𝑦))
73breqd 5163 . . . . . . 7 (𝜑 → (𝑦𝐶𝑥𝑦𝐹𝑥))
83breqd 5163 . . . . . . . 8 (𝜑 → (𝑦𝐶𝑧𝑦𝐹𝑧))
92, 8rexeqbidv 3341 . . . . . . 7 (𝜑 → (∃𝑧𝐴 𝑦𝐶𝑧 ↔ ∃𝑧𝐷 𝑦𝐹𝑧))
107, 9imbi12d 343 . . . . . 6 (𝜑 → ((𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
111, 10raleqbidv 3340 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
126, 11anbi12d 630 . . . 4 (𝜑 → ((∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧)) ↔ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))))
131, 12rabeqbidv 3448 . . 3 (𝜑 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
1413unieqd 4925 . 2 (𝜑 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
15 df-sup 9473 . 2 sup(𝐴, 𝐵, 𝐶) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))}
16 df-sup 9473 . 2 sup(𝐷, 𝐸, 𝐹) = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))}
1714, 15, 163eqtr4g 2793 1 (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wral 3058  wrex 3067  {crab 3430   cuni 4912   class class class wbr 5152  supcsup 9471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-in 3956  df-ss 3966  df-uni 4913  df-br 5153  df-sup 9473
This theorem is referenced by:  infeq123d  9512  wlimeq12  35448  aomclem8  42516
  Copyright terms: Public domain W3C validator