Step | Hyp | Ref
| Expression |
1 | | supeq123d.b |
. . . 4
⊢ (𝜑 → 𝐵 = 𝐸) |
2 | | supeq123d.a |
. . . . . 6
⊢ (𝜑 → 𝐴 = 𝐷) |
3 | | supeq123d.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 = 𝐹) |
4 | 3 | breqd 5081 |
. . . . . . 7
⊢ (𝜑 → (𝑥𝐶𝑦 ↔ 𝑥𝐹𝑦)) |
5 | 4 | notbid 317 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑥𝐶𝑦 ↔ ¬ 𝑥𝐹𝑦)) |
6 | 2, 5 | raleqbidv 3327 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝐶𝑦 ↔ ∀𝑦 ∈ 𝐷 ¬ 𝑥𝐹𝑦)) |
7 | 3 | breqd 5081 |
. . . . . . 7
⊢ (𝜑 → (𝑦𝐶𝑥 ↔ 𝑦𝐹𝑥)) |
8 | 3 | breqd 5081 |
. . . . . . . 8
⊢ (𝜑 → (𝑦𝐶𝑧 ↔ 𝑦𝐹𝑧)) |
9 | 2, 8 | rexeqbidv 3328 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ 𝐴 𝑦𝐶𝑧 ↔ ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧)) |
10 | 7, 9 | imbi12d 344 |
. . . . . 6
⊢ (𝜑 → ((𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧) ↔ (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧))) |
11 | 1, 10 | raleqbidv 3327 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧) ↔ ∀𝑦 ∈ 𝐸 (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧))) |
12 | 6, 11 | anbi12d 630 |
. . . 4
⊢ (𝜑 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧)) ↔ (∀𝑦 ∈ 𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦 ∈ 𝐸 (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧)))) |
13 | 1, 12 | rabeqbidv 3410 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧))} = {𝑥 ∈ 𝐸 ∣ (∀𝑦 ∈ 𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦 ∈ 𝐸 (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧))}) |
14 | 13 | unieqd 4850 |
. 2
⊢ (𝜑 → ∪ {𝑥
∈ 𝐵 ∣
(∀𝑦 ∈ 𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧))} = ∪ {𝑥 ∈ 𝐸 ∣ (∀𝑦 ∈ 𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦 ∈ 𝐸 (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧))}) |
15 | | df-sup 9131 |
. 2
⊢ sup(𝐴, 𝐵, 𝐶) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝐶𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝐶𝑧))} |
16 | | df-sup 9131 |
. 2
⊢ sup(𝐷, 𝐸, 𝐹) = ∪ {𝑥 ∈ 𝐸 ∣ (∀𝑦 ∈ 𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦 ∈ 𝐸 (𝑦𝐹𝑥 → ∃𝑧 ∈ 𝐷 𝑦𝐹𝑧))} |
17 | 14, 15, 16 | 3eqtr4g 2804 |
1
⊢ (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹)) |