MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl233anc Structured version   Visualization version   GIF version

Theorem syl233anc 1401
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl233anc.9 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl233anc (𝜑𝜇)

Proof of Theorem syl233anc
StepHypRef Expression
1 syl3anc.1 . . 3 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
31, 2jca 511 . 2 (𝜑 → (𝜓𝜒))
4 syl3anc.3 . 2 (𝜑𝜃)
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl233anc.8 . 2 (𝜑𝜌)
10 syl233anc.9 . 2 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
113, 4, 5, 6, 7, 8, 9, 10syl133anc 1395 1 (𝜑𝜇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  br8d  32536  2llnjN  39532  cdleme16b  40244  cdleme18d  40260  cdleme19d  40271  cdleme20bN  40275  cdleme20l1  40285  cdleme22cN  40307  cdleme22eALTN  40310  cdleme22f  40311  cdlemg33c0  40667  cdlemk5  40801  cdlemk5u  40826  cdlemky  40891  cdlemkyyN  40927
  Copyright terms: Public domain W3C validator