Proof of Theorem cdleme22cN
Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37386 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
3 | | simp12l 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
4 | | simp13 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | cdleme22.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
7 | | cdleme22.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 5, 6, 7 | hlatjcl 37389 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
9 | 1, 3, 4, 8 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | | simp11r 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
11 | | cdleme22.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
12 | 5, 11 | lhpbase 38020 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
14 | | cdleme22.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
15 | | cdleme22.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
16 | 5, 14, 15 | latmle2 18193 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
17 | 2, 9, 13, 16 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
18 | | simp21r 1290 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ 𝑊) |
19 | | nbrne2 5093 |
. . 3
⊢ ((((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊 ∧ ¬ 𝑆 ≤ 𝑊) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≠ 𝑆) |
20 | 17, 18, 19 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≠ 𝑆) |
21 | | simp32l 1297 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑆 ≤ (𝑇 ∨ 𝑉)) |
22 | 21 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑇 ∨ 𝑉)) |
23 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
24 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ 𝐻) |
25 | | simpl12 1248 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
26 | | simpl13 1249 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
27 | | simp31l 1295 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
29 | | simp23l 1293 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑉 ∈ 𝐴) |
30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑉 ∈ 𝐴) |
31 | | simp23r 1294 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑉 ≤ 𝑊) |
32 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑉 ≤ 𝑊) |
33 | | simpr 485 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑉 ≤ (𝑃 ∨ 𝑄)) |
34 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
35 | 14, 6, 15, 7, 11, 34 | cdleme22aa 38361 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
36 | 23, 24, 25, 26, 28, 30, 32, 33, 35 | syl233anc 1398 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
37 | 36 | oveq2d 7283 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → (𝑇 ∨ 𝑉) = (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
38 | 22, 37 | breqtrd 5099 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
39 | | simp32r 1298 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
40 | 39 | adantr 481 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
41 | | simp21l 1289 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
42 | 5, 7 | atbase 37311 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
43 | 41, 42 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑆 ∈ (Base‘𝐾)) |
44 | | simp22 1206 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑇 ∈ 𝐴) |
45 | | simp12r 1286 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ 𝑊) |
46 | 14, 6, 15, 7, 11 | lhpat 38065 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
47 | 1, 10, 3, 45, 4, 27, 46 | syl222anc 1385 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
48 | 5, 6, 7 | hlatjcl 37389 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) → (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
49 | 1, 44, 47, 48 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
50 | 5, 14, 15 | latlem12 18194 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑆 ≤ (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑆 ≤ ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄)))) |
51 | 2, 43, 49, 9, 50 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑆 ≤ (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑆 ≤ ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄)))) |
52 | 51 | adantr 481 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → ((𝑆 ≤ (𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑆 ≤ ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄)))) |
53 | 38, 40, 52 | mpbi2and 709 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄))) |
54 | | simp31r 1296 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑇) |
55 | 41, 44, 54 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) |
56 | | simp33 1210 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) |
57 | 56, 21, 39 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) |
58 | 14, 6, 15, 7, 11 | cdleme22b 38363 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
59 | 1, 55, 3, 4, 27, 29, 57, 58 | syl232anc 1396 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
60 | | hlatl 37382 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
61 | 1, 60 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝐾 ∈ AtLat) |
62 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0.‘𝐾) =
(0.‘𝐾) |
63 | 5, 14, 15, 62, 7 | atnle 37339 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ AtLat ∧ 𝑇 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ↔ (𝑇 ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾))) |
64 | 61, 44, 9, 63 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ↔ (𝑇 ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾))) |
65 | 59, 64 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑇 ∧ (𝑃 ∨ 𝑄)) = (0.‘𝐾)) |
66 | 65 | oveq1d 7282 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑇 ∧ (𝑃 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
67 | 5, 7 | atbase 37311 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
68 | 44, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝑇 ∈ (Base‘𝐾)) |
69 | 5, 14, 15 | latmle1 18192 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
70 | 2, 9, 13, 69 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
71 | 5, 14, 6, 15, 7 | atmod4i1 37888 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴 ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) → ((𝑇 ∧ (𝑃 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄))) |
72 | 1, 47, 68, 9, 70, 71 | syl131anc 1382 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑇 ∧ (𝑃 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄))) |
73 | | hlol 37383 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
74 | 1, 73 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → 𝐾 ∈ OL) |
75 | 5, 15 | latmcl 18168 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
76 | 2, 9, 13, 75 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
77 | 5, 6, 62 | olj02 37248 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
78 | 74, 76, 77 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((0.‘𝐾) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
79 | 66, 72, 78 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
80 | 79 | adantr 481 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → ((𝑇 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
81 | 53, 80 | breqtrd 5099 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
82 | 14, 7 | atcmp 37333 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊) ↔ 𝑆 = ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
83 | 61, 41, 47, 82 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊) ↔ 𝑆 = ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
84 | 83 | adantr 481 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊) ↔ 𝑆 = ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
85 | 81, 84 | mpbid 231 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → 𝑆 = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
86 | 85 | eqcomd 2744 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) ∧ 𝑉 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) = 𝑆) |
87 | 86 | ex 413 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (𝑉 ≤ (𝑃 ∨ 𝑄) → ((𝑃 ∨ 𝑄) ∧ 𝑊) = 𝑆)) |
88 | 87 | necon3ad 2956 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → (((𝑃 ∨ 𝑄) ∧ 𝑊) ≠ 𝑆 → ¬ 𝑉 ≤ (𝑃 ∨ 𝑄))) |
89 | 20, 88 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑇 ∨ 𝑉) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑄)) |