Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Structured version   Visualization version   GIF version

Theorem cdleme22cN 40285
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ v p q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22cN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ HL)
21hllatd 39306 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ Lat)
3 simp12l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝐴)
4 simp13 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑄𝐴)
5 eqid 2734 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdleme22.j . . . . . 6 = (join‘𝐾)
7 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 39309 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp11r 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊𝐻)
11 cdleme22.h . . . . . 6 𝐻 = (LHyp‘𝐾)
125, 11lhpbase 39941 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1310, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
14 cdleme22.l . . . . 5 = (le‘𝐾)
15 cdleme22.m . . . . 5 = (meet‘𝐾)
165, 14, 15latmle2 18484 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
172, 9, 13, 16syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
18 simp21r 1291 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑆 𝑊)
19 nbrne2 5145 . . 3 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ 𝑆 𝑊) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
2017, 18, 19syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
21 simp32l 1298 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑇 𝑉))
2221adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 𝑉))
231adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝐾 ∈ HL)
2410adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑊𝐻)
25 simpl12 1249 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl13 1250 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑄𝐴)
27 simp31l 1296 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝑄)
2827adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑃𝑄)
29 simp23l 1294 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉𝐴)
3029adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉𝐴)
31 simp23r 1295 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉 𝑊)
3231adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 𝑊)
33 simpr 484 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 (𝑃 𝑄))
34 eqid 2734 . . . . . . . . . . . 12 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
3514, 6, 15, 7, 11, 34cdleme22aa 40282 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = ((𝑃 𝑄) 𝑊))
3623, 24, 25, 26, 28, 30, 32, 33, 35syl233anc 1400 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 = ((𝑃 𝑄) 𝑊))
3736oveq2d 7430 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑇 𝑉) = (𝑇 ((𝑃 𝑄) 𝑊)))
3822, 37breqtrd 5151 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 ((𝑃 𝑄) 𝑊)))
39 simp32r 1299 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑃 𝑄))
4039adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
41 simp21l 1290 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝐴)
425, 7atbase 39231 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4341, 42syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
44 simp22 1207 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇𝐴)
45 simp12r 1287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑃 𝑊)
4614, 6, 15, 7, 11lhpat 39986 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
471, 10, 3, 45, 4, 27, 46syl222anc 1387 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
485, 6, 7hlatjcl 39309 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
491, 44, 47, 48syl3anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
505, 14, 15latlem12 18485 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
512, 43, 49, 9, 50syl13anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5251adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5338, 40, 52mpbi2and 712 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
54 simp31r 1297 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝑇)
5541, 44, 543jca 1128 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
56 simp33 1211 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
5756, 21, 393jca 1128 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))
5814, 6, 15, 7, 11cdleme22b 40284 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
591, 55, 3, 4, 27, 29, 57, 58syl232anc 1398 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑇 (𝑃 𝑄))
60 hlatl 39302 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
611, 60syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ AtLat)
62 eqid 2734 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
635, 14, 15, 62, 7atnle 39259 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6461, 44, 9, 63syl3anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6559, 64mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 (𝑃 𝑄)) = (0.‘𝐾))
6665oveq1d 7429 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
675, 7atbase 39231 . . . . . . . . . . 11 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
6844, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇 ∈ (Base‘𝐾))
695, 14, 15latmle1 18483 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
702, 9, 13, 69syl3anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
715, 14, 6, 15, 7atmod4i1 39809 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑊) ∈ 𝐴𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) (𝑃 𝑄)) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
721, 47, 68, 9, 70, 71syl131anc 1384 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
73 hlol 39303 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
741, 73syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ OL)
755, 15latmcl 18459 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
762, 9, 13, 75syl3anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
775, 6, 62olj02 39168 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7874, 76, 77syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7966, 72, 783eqtr3d 2777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8079adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8153, 80breqtrd 5151 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑃 𝑄) 𝑊))
8214, 7atcmp 39253 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑆𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8361, 41, 47, 82syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8483adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8581, 84mpbid 232 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 = ((𝑃 𝑄) 𝑊))
8685eqcomd 2740 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) = 𝑆)
8786ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑉 (𝑃 𝑄) → ((𝑃 𝑄) 𝑊) = 𝑆))
8887necon3ad 2944 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑃 𝑄) 𝑊) ≠ 𝑆 → ¬ 𝑉 (𝑃 𝑄)))
8920, 88mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  lecple 17284  joincjn 18332  meetcmee 18333  0.cp0 18442  Latclat 18450  OLcol 39116  Atomscatm 39205  AtLatcal 39206  HLchlt 39292  LHypclh 39927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-llines 39441  df-psubsp 39446  df-pmap 39447  df-padd 39739  df-lhyp 39931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator