Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Structured version   Visualization version   GIF version

Theorem cdleme22cN 36505
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ v p q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22cN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1340 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ HL)
21hllatd 35527 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ Lat)
3 simp12l 1342 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝐴)
4 simp13 1219 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑄𝐴)
5 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdleme22.j . . . . . 6 = (join‘𝐾)
7 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 35530 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1439 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp11r 1341 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊𝐻)
11 cdleme22.h . . . . . 6 𝐻 = (LHyp‘𝐾)
125, 11lhpbase 36161 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1310, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
14 cdleme22.l . . . . 5 = (le‘𝐾)
15 cdleme22.m . . . . 5 = (meet‘𝐾)
165, 14, 15latmle2 17474 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
172, 9, 13, 16syl3anc 1439 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
18 simp21r 1347 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑆 𝑊)
19 nbrne2 4908 . . 3 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ 𝑆 𝑊) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
2017, 18, 19syl2anc 579 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
21 simp32l 1354 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑇 𝑉))
2221adantr 474 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 𝑉))
231adantr 474 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝐾 ∈ HL)
2410adantr 474 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑊𝐻)
25 simpl12 1288 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl13 1290 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑄𝐴)
27 simp31l 1352 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝑄)
2827adantr 474 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑃𝑄)
29 simp23l 1350 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉𝐴)
3029adantr 474 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉𝐴)
31 simp23r 1351 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉 𝑊)
3231adantr 474 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 𝑊)
33 simpr 479 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 (𝑃 𝑄))
34 eqid 2778 . . . . . . . . . . . 12 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
3514, 6, 15, 7, 11, 34cdleme22aa 36502 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = ((𝑃 𝑄) 𝑊))
3623, 24, 25, 26, 28, 30, 32, 33, 35syl233anc 1467 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 = ((𝑃 𝑄) 𝑊))
3736oveq2d 6940 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑇 𝑉) = (𝑇 ((𝑃 𝑄) 𝑊)))
3822, 37breqtrd 4914 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 ((𝑃 𝑄) 𝑊)))
39 simp32r 1355 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑃 𝑄))
4039adantr 474 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
41 simp21l 1346 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝐴)
425, 7atbase 35452 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4341, 42syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
44 simp22 1221 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇𝐴)
45 simp12r 1343 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑃 𝑊)
4614, 6, 15, 7, 11lhpat 36206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
471, 10, 3, 45, 4, 27, 46syl222anc 1454 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
485, 6, 7hlatjcl 35530 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
491, 44, 47, 48syl3anc 1439 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
505, 14, 15latlem12 17475 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
512, 43, 49, 9, 50syl13anc 1440 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5251adantr 474 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5338, 40, 52mpbi2and 702 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
54 simp31r 1353 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝑇)
5541, 44, 543jca 1119 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
56 simp33 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
5756, 21, 393jca 1119 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))
5814, 6, 15, 7, 11cdleme22b 36504 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
591, 55, 3, 4, 27, 29, 57, 58syl232anc 1465 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑇 (𝑃 𝑄))
60 hlatl 35523 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
611, 60syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ AtLat)
62 eqid 2778 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
635, 14, 15, 62, 7atnle 35480 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6461, 44, 9, 63syl3anc 1439 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6559, 64mpbid 224 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 (𝑃 𝑄)) = (0.‘𝐾))
6665oveq1d 6939 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
675, 7atbase 35452 . . . . . . . . . . 11 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
6844, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇 ∈ (Base‘𝐾))
695, 14, 15latmle1 17473 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
702, 9, 13, 69syl3anc 1439 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
715, 14, 6, 15, 7atmod4i1 36029 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑊) ∈ 𝐴𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) (𝑃 𝑄)) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
721, 47, 68, 9, 70, 71syl131anc 1451 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
73 hlol 35524 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
741, 73syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ OL)
755, 15latmcl 17449 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
762, 9, 13, 75syl3anc 1439 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
775, 6, 62olj02 35389 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7874, 76, 77syl2anc 579 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7966, 72, 783eqtr3d 2822 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8079adantr 474 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8153, 80breqtrd 4914 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑃 𝑄) 𝑊))
8214, 7atcmp 35474 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑆𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8361, 41, 47, 82syl3anc 1439 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8483adantr 474 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8581, 84mpbid 224 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 = ((𝑃 𝑄) 𝑊))
8685eqcomd 2784 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) = 𝑆)
8786ex 403 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑉 (𝑃 𝑄) → ((𝑃 𝑄) 𝑊) = 𝑆))
8887necon3ad 2982 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑃 𝑄) 𝑊) ≠ 𝑆 → ¬ 𝑉 (𝑃 𝑄)))
8920, 88mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  meetcmee 17342  0.cp0 17434  Latclat 17442  OLcol 35337  Atomscatm 35426  AtLatcal 35427  HLchlt 35513  LHypclh 36147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-p1 17437  df-lat 17443  df-clat 17505  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-llines 35661  df-psubsp 35666  df-pmap 35667  df-padd 35959  df-lhyp 36151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator