Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Structured version   Visualization version   GIF version

Theorem cdleme22cN 40337
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t v =/= p q and s p q implies ¬ v p q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdleme22cN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ HL)
21hllatd 39358 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ Lat)
3 simp12l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝐴)
4 simp13 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑄𝐴)
5 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdleme22.j . . . . . 6 = (join‘𝐾)
7 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 39361 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp11r 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊𝐻)
11 cdleme22.h . . . . . 6 𝐻 = (LHyp‘𝐾)
125, 11lhpbase 39993 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1310, 12syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
14 cdleme22.l . . . . 5 = (le‘𝐾)
15 cdleme22.m . . . . 5 = (meet‘𝐾)
165, 14, 15latmle2 18529 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
172, 9, 13, 16syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) 𝑊)
18 simp21r 1291 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑆 𝑊)
19 nbrne2 5169 . . 3 ((((𝑃 𝑄) 𝑊) 𝑊 ∧ ¬ 𝑆 𝑊) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
2017, 18, 19syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ≠ 𝑆)
21 simp32l 1298 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑇 𝑉))
2221adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 𝑉))
231adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝐾 ∈ HL)
2410adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑊𝐻)
25 simpl12 1249 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simpl13 1250 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑄𝐴)
27 simp31l 1296 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑃𝑄)
2827adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑃𝑄)
29 simp23l 1294 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉𝐴)
3029adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉𝐴)
31 simp23r 1295 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑉 𝑊)
3231adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 𝑊)
33 simpr 484 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 (𝑃 𝑄))
34 eqid 2736 . . . . . . . . . . . 12 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
3514, 6, 15, 7, 11, 34cdleme22aa 40334 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = ((𝑃 𝑄) 𝑊))
3623, 24, 25, 26, 28, 30, 32, 33, 35syl233anc 1399 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑉 = ((𝑃 𝑄) 𝑊))
3736oveq2d 7451 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑇 𝑉) = (𝑇 ((𝑃 𝑄) 𝑊)))
3822, 37breqtrd 5175 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑇 ((𝑃 𝑄) 𝑊)))
39 simp32r 1299 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 (𝑃 𝑄))
4039adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
41 simp21l 1290 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝐴)
425, 7atbase 39283 . . . . . . . . . . 11 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
4341, 42syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
44 simp22 1207 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇𝐴)
45 simp12r 1287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑃 𝑊)
4614, 6, 15, 7, 11lhpat 40038 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
471, 10, 3, 45, 4, 27, 46syl222anc 1386 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
485, 6, 7hlatjcl 39361 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
491, 44, 47, 48syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
505, 14, 15latlem12 18530 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑇 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
512, 43, 49, 9, 50syl13anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5251adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑆 (𝑇 ((𝑃 𝑄) 𝑊)) ∧ 𝑆 (𝑃 𝑄)) ↔ 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄))))
5338, 40, 52mpbi2and 712 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
54 simp31r 1297 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑆𝑇)
5541, 44, 543jca 1128 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆𝐴𝑇𝐴𝑆𝑇))
56 simp33 1211 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 𝑉) ≠ (𝑃 𝑄))
5756, 21, 393jca 1128 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))
5814, 6, 15, 7, 11cdleme22b 40336 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑇 𝑉) ≠ (𝑃 𝑄) ∧ 𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)))) → ¬ 𝑇 (𝑃 𝑄))
591, 55, 3, 4, 27, 29, 57, 58syl232anc 1397 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑇 (𝑃 𝑄))
60 hlatl 39354 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
611, 60syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ AtLat)
62 eqid 2736 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
635, 14, 15, 62, 7atnle 39311 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6461, 44, 9, 63syl3anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (¬ 𝑇 (𝑃 𝑄) ↔ (𝑇 (𝑃 𝑄)) = (0.‘𝐾)))
6559, 64mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑇 (𝑃 𝑄)) = (0.‘𝐾))
6665oveq1d 7450 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((0.‘𝐾) ((𝑃 𝑄) 𝑊)))
675, 7atbase 39283 . . . . . . . . . . 11 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
6844, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝑇 ∈ (Base‘𝐾))
695, 14, 15latmle1 18528 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
702, 9, 13, 69syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
715, 14, 6, 15, 7atmod4i1 39861 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑊) ∈ 𝐴𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑄) 𝑊) (𝑃 𝑄)) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
721, 47, 68, 9, 70, 71syl131anc 1383 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 (𝑃 𝑄)) ((𝑃 𝑄) 𝑊)) = ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)))
73 hlol 39355 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
741, 73syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → 𝐾 ∈ OL)
755, 15latmcl 18504 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
762, 9, 13, 75syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
775, 6, 62olj02 39220 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7874, 76, 77syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((0.‘𝐾) ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
7966, 72, 783eqtr3d 2784 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8079adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑇 ((𝑃 𝑄) 𝑊)) (𝑃 𝑄)) = ((𝑃 𝑄) 𝑊))
8153, 80breqtrd 5175 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 ((𝑃 𝑄) 𝑊))
8214, 7atcmp 39305 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑆𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8361, 41, 47, 82syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8483adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑄) 𝑊) ↔ 𝑆 = ((𝑃 𝑄) 𝑊)))
8581, 84mpbid 232 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → 𝑆 = ((𝑃 𝑄) 𝑊))
8685eqcomd 2742 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) ∧ 𝑉 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) = 𝑆)
8786ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (𝑉 (𝑃 𝑄) → ((𝑃 𝑄) 𝑊) = 𝑆))
8887necon3ad 2952 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → (((𝑃 𝑄) 𝑊) ≠ 𝑆 → ¬ 𝑉 (𝑃 𝑄)))
8920, 88mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (𝑆 (𝑇 𝑉) ∧ 𝑆 (𝑃 𝑄)) ∧ (𝑇 𝑉) ≠ (𝑃 𝑄))) → ¬ 𝑉 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1538  wcel 2107  wne 2939   class class class wbr 5149  cfv 6566  (class class class)co 7435  Basecbs 17251  lecple 17311  joincjn 18375  meetcmee 18376  0.cp0 18487  Latclat 18495  OLcol 39168  Atomscatm 39257  AtLatcal 39258  HLchlt 39344  LHypclh 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-1st 8019  df-2nd 8020  df-proset 18358  df-poset 18377  df-plt 18394  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-p0 18489  df-p1 18490  df-lat 18496  df-clat 18563  df-oposet 39170  df-ol 39172  df-oml 39173  df-covers 39260  df-ats 39261  df-atl 39292  df-cvlat 39316  df-hlat 39345  df-llines 39493  df-psubsp 39498  df-pmap 39499  df-padd 39791  df-lhyp 39983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator