|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) | 
| syl3anc.2 | ⊢ (𝜑 → 𝜒) | 
| syl3anc.3 | ⊢ (𝜑 → 𝜃) | 
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) | 
| syl23anc.5 | ⊢ (𝜑 → 𝜂) | 
| syl33anc.6 | ⊢ (𝜑 → 𝜁) | 
| syl133anc.7 | ⊢ (𝜑 → 𝜎) | 
| syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | 
| Ref | Expression | 
|---|---|
| syl322anc | ⊢ (𝜑 → 𝜌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) | 
| 9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1394 | 1 ⊢ (𝜑 → 𝜌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: cofcut2d 27957 ax5seglem6 28949 ax5seg 28953 elpaddatriN 39805 paddasslem8 39829 paddasslem12 39833 paddasslem13 39834 pmodlem1 39848 osumcllem5N 39962 pexmidlem2N 39973 cdleme3h 40237 cdleme7ga 40250 cdleme20l 40324 cdleme21ct 40331 cdleme21d 40332 cdleme21e 40333 cdleme26e 40361 cdleme26eALTN 40363 cdleme26fALTN 40364 cdleme26f 40365 cdleme26f2ALTN 40366 cdleme26f2 40367 cdleme39n 40468 cdlemh2 40818 cdlemh 40819 cdlemk12 40852 cdlemk12u 40874 cdlemkfid1N 40923 congsub 42982 mzpcong 42984 jm2.18 43000 jm2.15nn0 43015 jm2.27c 43019 | 
| Copyright terms: Public domain | W3C validator |