MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1400
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1394 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cofcut2d  27854  ax5seglem6  28897  ax5seg  28901  elpaddatriN  39782  paddasslem8  39806  paddasslem12  39810  paddasslem13  39811  pmodlem1  39825  osumcllem5N  39939  pexmidlem2N  39950  cdleme3h  40214  cdleme7ga  40227  cdleme20l  40301  cdleme21ct  40308  cdleme21d  40309  cdleme21e  40310  cdleme26e  40338  cdleme26eALTN  40340  cdleme26fALTN  40341  cdleme26f  40342  cdleme26f2ALTN  40343  cdleme26f2  40344  cdleme39n  40445  cdlemh2  40795  cdlemh  40796  cdlemk12  40829  cdlemk12u  40851  cdlemkfid1N  40900  congsub  42943  mzpcong  42945  jm2.18  42961  jm2.15nn0  42976  jm2.27c  42980
  Copyright terms: Public domain W3C validator