MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1395
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1389 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086
This theorem is referenced by:  cofcut2d  27758  ax5seglem6  28627  ax5seg  28631  elpaddatriN  39130  paddasslem8  39154  paddasslem12  39158  paddasslem13  39159  pmodlem1  39173  osumcllem5N  39287  pexmidlem2N  39298  cdleme3h  39562  cdleme7ga  39575  cdleme20l  39649  cdleme21ct  39656  cdleme21d  39657  cdleme21e  39658  cdleme26e  39686  cdleme26eALTN  39688  cdleme26fALTN  39689  cdleme26f  39690  cdleme26f2ALTN  39691  cdleme26f2  39692  cdleme39n  39793  cdlemh2  40143  cdlemh  40144  cdlemk12  40177  cdlemk12u  40199  cdlemkfid1N  40248  congsub  42164  mzpcong  42166  jm2.18  42182  jm2.15nn0  42197  jm2.27c  42201
  Copyright terms: Public domain W3C validator