| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl322anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
| 9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1393 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cofcut2d 27893 ax5seglem6 28879 ax5seg 28883 elpaddatriN 39764 paddasslem8 39788 paddasslem12 39792 paddasslem13 39793 pmodlem1 39807 osumcllem5N 39921 pexmidlem2N 39932 cdleme3h 40196 cdleme7ga 40209 cdleme20l 40283 cdleme21ct 40290 cdleme21d 40291 cdleme21e 40292 cdleme26e 40320 cdleme26eALTN 40322 cdleme26fALTN 40323 cdleme26f 40324 cdleme26f2ALTN 40325 cdleme26f2 40326 cdleme39n 40427 cdlemh2 40777 cdlemh 40778 cdlemk12 40811 cdlemk12u 40833 cdlemkfid1N 40882 congsub 42945 mzpcong 42947 jm2.18 42963 jm2.15nn0 42978 jm2.27c 42982 |
| Copyright terms: Public domain | W3C validator |