Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl322anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1390 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ax5seglem6 27205 ax5seg 27209 elpaddatriN 37744 paddasslem8 37768 paddasslem12 37772 paddasslem13 37773 pmodlem1 37787 osumcllem5N 37901 pexmidlem2N 37912 cdleme3h 38176 cdleme7ga 38189 cdleme20l 38263 cdleme21ct 38270 cdleme21d 38271 cdleme21e 38272 cdleme26e 38300 cdleme26eALTN 38302 cdleme26fALTN 38303 cdleme26f 38304 cdleme26f2ALTN 38305 cdleme26f2 38306 cdleme39n 38407 cdlemh2 38757 cdlemh 38758 cdlemk12 38791 cdlemk12u 38813 cdlemkfid1N 38862 congsub 40708 mzpcong 40710 jm2.18 40726 jm2.15nn0 40741 jm2.27c 40745 |
Copyright terms: Public domain | W3C validator |