MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1400
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1394 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  cofcut2d  27957  ax5seglem6  28949  ax5seg  28953  elpaddatriN  39805  paddasslem8  39829  paddasslem12  39833  paddasslem13  39834  pmodlem1  39848  osumcllem5N  39962  pexmidlem2N  39973  cdleme3h  40237  cdleme7ga  40250  cdleme20l  40324  cdleme21ct  40331  cdleme21d  40332  cdleme21e  40333  cdleme26e  40361  cdleme26eALTN  40363  cdleme26fALTN  40364  cdleme26f  40365  cdleme26f2ALTN  40366  cdleme26f2  40367  cdleme39n  40468  cdlemh2  40818  cdlemh  40819  cdlemk12  40852  cdlemk12u  40874  cdlemkfid1N  40923  congsub  42982  mzpcong  42984  jm2.18  43000  jm2.15nn0  43015  jm2.27c  43019
  Copyright terms: Public domain W3C validator