MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1399
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1393 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cofcut2d  27893  ax5seglem6  28879  ax5seg  28883  elpaddatriN  39764  paddasslem8  39788  paddasslem12  39792  paddasslem13  39793  pmodlem1  39807  osumcllem5N  39921  pexmidlem2N  39932  cdleme3h  40196  cdleme7ga  40209  cdleme20l  40283  cdleme21ct  40290  cdleme21d  40291  cdleme21e  40292  cdleme26e  40320  cdleme26eALTN  40322  cdleme26fALTN  40323  cdleme26f  40324  cdleme26f2ALTN  40325  cdleme26f2  40326  cdleme39n  40427  cdlemh2  40777  cdlemh  40778  cdlemk12  40811  cdlemk12u  40833  cdlemkfid1N  40882  congsub  42945  mzpcong  42947  jm2.18  42963  jm2.15nn0  42978  jm2.27c  42982
  Copyright terms: Public domain W3C validator