| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl322anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
| 9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1394 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cofcut2d 27838 ax5seglem6 28868 ax5seg 28872 elpaddatriN 39804 paddasslem8 39828 paddasslem12 39832 paddasslem13 39833 pmodlem1 39847 osumcllem5N 39961 pexmidlem2N 39972 cdleme3h 40236 cdleme7ga 40249 cdleme20l 40323 cdleme21ct 40330 cdleme21d 40331 cdleme21e 40332 cdleme26e 40360 cdleme26eALTN 40362 cdleme26fALTN 40363 cdleme26f 40364 cdleme26f2ALTN 40365 cdleme26f2 40366 cdleme39n 40467 cdlemh2 40817 cdlemh 40818 cdlemk12 40851 cdlemk12u 40873 cdlemkfid1N 40922 congsub 42966 mzpcong 42968 jm2.18 42984 jm2.15nn0 42999 jm2.27c 43003 |
| Copyright terms: Public domain | W3C validator |