MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1400
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1394 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cofcut2d  27870  ax5seglem6  28916  ax5seg  28920  elpaddatriN  39925  paddasslem8  39949  paddasslem12  39953  paddasslem13  39954  pmodlem1  39968  osumcllem5N  40082  pexmidlem2N  40093  cdleme3h  40357  cdleme7ga  40370  cdleme20l  40444  cdleme21ct  40451  cdleme21d  40452  cdleme21e  40453  cdleme26e  40481  cdleme26eALTN  40483  cdleme26fALTN  40484  cdleme26f  40485  cdleme26f2ALTN  40486  cdleme26f2  40487  cdleme39n  40588  cdlemh2  40938  cdlemh  40939  cdlemk12  40972  cdlemk12u  40994  cdlemkfid1N  41043  congsub  43090  mzpcong  43092  jm2.18  43108  jm2.15nn0  43123  jm2.27c  43127
  Copyright terms: Public domain W3C validator