MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1400
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1394 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cofcut2d  27868  ax5seglem6  28913  ax5seg  28917  elpaddatriN  39848  paddasslem8  39872  paddasslem12  39876  paddasslem13  39877  pmodlem1  39891  osumcllem5N  40005  pexmidlem2N  40016  cdleme3h  40280  cdleme7ga  40293  cdleme20l  40367  cdleme21ct  40374  cdleme21d  40375  cdleme21e  40376  cdleme26e  40404  cdleme26eALTN  40406  cdleme26fALTN  40407  cdleme26f  40408  cdleme26f2ALTN  40409  cdleme26f2  40410  cdleme39n  40511  cdlemh2  40861  cdlemh  40862  cdlemk12  40895  cdlemk12u  40917  cdlemkfid1N  40966  congsub  43009  mzpcong  43011  jm2.18  43027  jm2.15nn0  43042  jm2.27c  43046
  Copyright terms: Public domain W3C validator