MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl322anc Structured version   Visualization version   GIF version

Theorem syl322anc 1400
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl322anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
Assertion
Ref Expression
syl322anc (𝜑𝜌)

Proof of Theorem syl322anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . 2 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
7 syl133anc.7 . . 3 (𝜑𝜎)
86, 7jca 511 . 2 (𝜑 → (𝜁𝜎))
9 syl322anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎)) → 𝜌)
101, 2, 3, 4, 5, 8, 9syl321anc 1394 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  cofcut2d  27831  ax5seglem6  28861  ax5seg  28865  elpaddatriN  39797  paddasslem8  39821  paddasslem12  39825  paddasslem13  39826  pmodlem1  39840  osumcllem5N  39954  pexmidlem2N  39965  cdleme3h  40229  cdleme7ga  40242  cdleme20l  40316  cdleme21ct  40323  cdleme21d  40324  cdleme21e  40325  cdleme26e  40353  cdleme26eALTN  40355  cdleme26fALTN  40356  cdleme26f  40357  cdleme26f2ALTN  40358  cdleme26f2  40359  cdleme39n  40460  cdlemh2  40810  cdlemh  40811  cdlemk12  40844  cdlemk12u  40866  cdlemkfid1N  40915  congsub  42959  mzpcong  42961  jm2.18  42977  jm2.15nn0  42992  jm2.27c  42996
  Copyright terms: Public domain W3C validator