| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl322anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 6, 7 | jca 511 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
| 9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1394 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cofcut2d 27883 ax5seglem6 28913 ax5seg 28917 elpaddatriN 39822 paddasslem8 39846 paddasslem12 39850 paddasslem13 39851 pmodlem1 39865 osumcllem5N 39979 pexmidlem2N 39990 cdleme3h 40254 cdleme7ga 40267 cdleme20l 40341 cdleme21ct 40348 cdleme21d 40349 cdleme21e 40350 cdleme26e 40378 cdleme26eALTN 40380 cdleme26fALTN 40381 cdleme26f 40382 cdleme26f2ALTN 40383 cdleme26f2 40384 cdleme39n 40485 cdlemh2 40835 cdlemh 40836 cdlemk12 40869 cdlemk12u 40891 cdlemkfid1N 40940 congsub 42994 mzpcong 42996 jm2.18 43012 jm2.15nn0 43027 jm2.27c 43031 |
| Copyright terms: Public domain | W3C validator |