![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl322anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 6, 7 | jca 510 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1390 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: cofcut2d 27648 ax5seglem6 28459 ax5seg 28463 elpaddatriN 38977 paddasslem8 39001 paddasslem12 39005 paddasslem13 39006 pmodlem1 39020 osumcllem5N 39134 pexmidlem2N 39145 cdleme3h 39409 cdleme7ga 39422 cdleme20l 39496 cdleme21ct 39503 cdleme21d 39504 cdleme21e 39505 cdleme26e 39533 cdleme26eALTN 39535 cdleme26fALTN 39536 cdleme26f 39537 cdleme26f2ALTN 39538 cdleme26f2 39539 cdleme39n 39640 cdlemh2 39990 cdlemh 39991 cdlemk12 40024 cdlemk12u 40046 cdlemkfid1N 40095 congsub 42011 mzpcong 42013 jm2.18 42029 jm2.15nn0 42044 jm2.27c 42048 |
Copyright terms: Public domain | W3C validator |