![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl322anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl322anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl322anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 6, 7 | jca 508 | . 2 ⊢ (𝜑 → (𝜁 ∧ 𝜎)) |
9 | syl322anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 5, 8, 9 | syl321anc 1512 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: ax5seglem6 26175 ax5seg 26179 elpaddatriN 35828 paddasslem8 35852 paddasslem12 35856 paddasslem13 35857 pmodlem1 35871 osumcllem5N 35985 pexmidlem2N 35996 cdleme3h 36260 cdleme7ga 36273 cdleme20l 36347 cdleme21ct 36354 cdleme21d 36355 cdleme21e 36356 cdleme26e 36384 cdleme26eALTN 36386 cdleme26fALTN 36387 cdleme26f 36388 cdleme26f2ALTN 36389 cdleme26f2 36390 cdleme39n 36491 cdlemh2 36841 cdlemh 36842 cdlemk12 36875 cdlemk12u 36897 cdlemkfid1N 36946 congsub 38326 mzpcong 38328 jm2.18 38344 jm2.15nn0 38359 jm2.27c 38363 |
Copyright terms: Public domain | W3C validator |