Proof of Theorem cdleme20l1
Step | Hyp | Ref
| Expression |
1 | | simp11l 1282 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
2 | | simp11 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp12 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simp13 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
5 | | simp22 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
6 | | simp23 1206 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ 𝑊) |
7 | 5, 6 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
8 | | simp31 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) |
9 | | simp32 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
10 | | cdleme19.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
11 | | cdleme19.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
12 | | cdleme19.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
13 | | cdleme19.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
14 | | cdleme19.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
15 | | cdleme19.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
16 | | cdleme19.f |
. . . 4
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
17 | 10, 11, 12, 13, 14, 15, 16 | cdleme3fa 38177 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
18 | 2, 3, 4, 7, 8, 9, 17 | syl132anc 1386 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
19 | | simp11r 1283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
20 | | simp21 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
21 | | simp33 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
22 | | cdleme19.d |
. . . 4
⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) |
23 | 10, 11, 12, 13, 14, 22 | cdlemeda 38239 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐷 ∈ 𝐴) |
24 | 1, 19, 5, 6, 20, 21, 9, 23 | syl223anc 1394 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐷 ∈ 𝐴) |
25 | 10, 11, 12, 13, 14, 15, 16, 16, 22, 22 | cdleme19c 38246 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ≠ 𝐷) |
26 | 1, 19, 3, 4, 7, 20,
8, 9, 25 | syl233anc 1397 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ≠ 𝐷) |
27 | | eqid 2738 |
. . 3
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
28 | 11, 13, 27 | llni2 37453 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) ∧ 𝐹 ≠ 𝐷) → (𝐹 ∨ 𝐷) ∈ (LLines‘𝐾)) |
29 | 1, 18, 24, 26, 28 | syl31anc 1371 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ 𝐷) ∈ (LLines‘𝐾)) |