Step | Hyp | Ref
| Expression |
1 | | simp11 1204 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΎ β HL β§ π β π»)) |
2 | | simp12 1205 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
3 | | simp13 1206 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
4 | | simp21 1207 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
5 | | simp23l 1295 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
6 | | simp31 1210 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) |
7 | | cdleme12.l |
. . . 4
β’ β€ =
(leβπΎ) |
8 | | cdleme12.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
9 | | cdleme12.m |
. . . 4
β’ β§ =
(meetβπΎ) |
10 | | cdleme12.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
11 | | cdleme12.h |
. . . 4
β’ π» = (LHypβπΎ) |
12 | | cdleme12.u |
. . . 4
β’ π = ((π β¨ π) β§ π) |
13 | | cdleme12.f |
. . . 4
β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
14 | | eqid 2733 |
. . . 4
β’ ((π β¨ π) β§ π) = ((π β¨ π) β§ π) |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | cdleme3g 38743 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΉ β π) |
16 | 1, 2, 3, 4, 5, 6, 15 | syl132anc 1389 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β π) |
17 | | simp11l 1285 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β HL) |
18 | 17 | hllatd 37872 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β Lat) |
19 | | simp21l 1291 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
20 | 7, 8, 9, 10, 11, 12, 13 | cdleme3fa 38745 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΉ β π΄) |
21 | 1, 2, 3, 4, 5, 6, 20 | syl132anc 1389 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β π΄) |
22 | | eqid 2733 |
. . . . . . . . . . 11
β’
(BaseβπΎ) =
(BaseβπΎ) |
23 | 22, 8, 10 | hlatjcl 37875 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β π΄ β§ πΉ β π΄) β (π β¨ πΉ) β (BaseβπΎ)) |
24 | 17, 19, 21, 23 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ πΉ) β (BaseβπΎ)) |
25 | | simp22l 1293 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
26 | 22, 10 | atbase 37797 |
. . . . . . . . . 10
β’ (π β π΄ β π β (BaseβπΎ)) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β (BaseβπΎ)) |
28 | 22, 9 | latmcl 18334 |
. . . . . . . . 9
β’ ((πΎ β Lat β§ (π β¨ πΉ) β (BaseβπΎ) β§ π β (BaseβπΎ)) β ((π β¨ πΉ) β§ π) β (BaseβπΎ)) |
29 | 18, 24, 27, 28 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ πΉ) β§ π) β (BaseβπΎ)) |
30 | 22, 10 | atbase 37797 |
. . . . . . . . 9
β’ (πΉ β π΄ β πΉ β (BaseβπΎ)) |
31 | 21, 30 | syl 17 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β (BaseβπΎ)) |
32 | 22, 7, 8 | latlej2 18343 |
. . . . . . . 8
β’ ((πΎ β Lat β§ ((π β¨ πΉ) β§ π) β (BaseβπΎ) β§ πΉ β (BaseβπΎ)) β πΉ β€ (((π β¨ πΉ) β§ π) β¨ πΉ)) |
33 | 18, 29, 31, 32 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β€ (((π β¨ πΉ) β§ π) β¨ πΉ)) |
34 | 33 | adantr 482 |
. . . . . 6
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β§ πΉ = πΊ) β πΉ β€ (((π β¨ πΉ) β§ π) β¨ πΉ)) |
35 | 7, 8, 10 | hlatlej2 37884 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β π΄ β§ πΉ β π΄) β πΉ β€ (π β¨ πΉ)) |
36 | 17, 19, 21, 35 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β€ (π β¨ πΉ)) |
37 | 22, 7, 8, 9, 10 | atmod2i1 38370 |
. . . . . . . . 9
β’ ((πΎ β HL β§ (πΉ β π΄ β§ (π β¨ πΉ) β (BaseβπΎ) β§ π β (BaseβπΎ)) β§ πΉ β€ (π β¨ πΉ)) β (((π β¨ πΉ) β§ π) β¨ πΉ) = ((π β¨ πΉ) β§ (π β¨ πΉ))) |
38 | 17, 21, 24, 27, 36, 37 | syl131anc 1384 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (((π β¨ πΉ) β§ π) β¨ πΉ) = ((π β¨ πΉ) β§ (π β¨ πΉ))) |
39 | | oveq2 7366 |
. . . . . . . . 9
β’ (πΉ = πΊ β (π β¨ πΉ) = (π β¨ πΊ)) |
40 | 39 | oveq2d 7374 |
. . . . . . . 8
β’ (πΉ = πΊ β ((π β¨ πΉ) β§ (π β¨ πΉ)) = ((π β¨ πΉ) β§ (π β¨ πΊ))) |
41 | 38, 40 | sylan9eq 2793 |
. . . . . . 7
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β§ πΉ = πΊ) β (((π β¨ πΉ) β§ π) β¨ πΉ) = ((π β¨ πΉ) β§ (π β¨ πΊ))) |
42 | | simp11r 1286 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π») |
43 | | simp13l 1289 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
44 | | simp22 1208 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
45 | | simp23r 1296 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
46 | | simp33 1212 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) |
47 | 45, 46 | jca 513 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π))) |
48 | | cdleme12.g |
. . . . . . . . . 10
β’ πΊ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
49 | 7, 8, 9, 10, 11, 12, 13, 48 | cdleme12 38780 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β π΄ β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) β ((π β¨ πΉ) β§ (π β¨ πΊ)) = π) |
50 | 17, 42, 2, 43, 5, 4,
44, 47, 49 | syl233anc 1400 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π β¨ πΉ) β§ (π β¨ πΊ)) = π) |
51 | 50 | adantr 482 |
. . . . . . 7
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β§ πΉ = πΊ) β ((π β¨ πΉ) β§ (π β¨ πΊ)) = π) |
52 | 41, 51 | eqtrd 2773 |
. . . . . 6
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β§ πΉ = πΊ) β (((π β¨ πΉ) β§ π) β¨ πΉ) = π) |
53 | 34, 52 | breqtrd 5132 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β§ πΉ = πΊ) β πΉ β€ π) |
54 | 53 | ex 414 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉ = πΊ β πΉ β€ π)) |
55 | | hlatl 37868 |
. . . . . 6
β’ (πΎ β HL β πΎ β AtLat) |
56 | 17, 55 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β AtLat) |
57 | | simp12l 1287 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
58 | | simp12r 1288 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ π) |
59 | 7, 8, 9, 10, 11, 12 | lhpat2 38554 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
60 | 17, 42, 57, 58, 43, 5, 59 | syl222anc 1387 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
61 | 7, 10 | atcmp 37819 |
. . . . 5
β’ ((πΎ β AtLat β§ πΉ β π΄ β§ π β π΄) β (πΉ β€ π β πΉ = π)) |
62 | 56, 21, 60, 61 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉ β€ π β πΉ = π)) |
63 | 54, 62 | sylibd 238 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉ = πΊ β πΉ = π)) |
64 | 63 | necon3d 2961 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉ β π β πΉ β πΊ)) |
65 | 16, 64 | mpd 15 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π β§ π β π)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΉ β πΊ) |