Proof of Theorem cdleme22f
| Step | Hyp | Ref
| Expression |
| 1 | | cdleme22f.n |
. 2
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) |
| 2 | | simp11l 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝐾 ∈ HL) |
| 3 | 2 | hllatd 39382 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝐾 ∈ Lat) |
| 4 | | simp12l 1287 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑃 ∈ 𝐴) |
| 5 | | simp13l 1289 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑄 ∈ 𝐴) |
| 6 | | eqid 2735 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 7 | | cdleme22.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 8 | | cdleme22.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 6, 7, 8 | hlatjcl 39385 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 10 | 2, 4, 5, 9 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 11 | | simp11r 1286 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑊 ∈ 𝐻) |
| 12 | | simp22 1208 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑇 ∈ 𝐴) |
| 13 | | cdleme22.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 14 | | cdleme22.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
| 15 | | cdleme22.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 16 | | cdleme22f.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 17 | | cdleme22f.f |
. . . . . . 7
⊢ 𝐹 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) |
| 18 | 13, 7, 14, 8, 15, 16, 17, 6 | cdleme1b 40245 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
| 19 | 2, 11, 4, 5, 12, 18 | syl23anc 1379 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝐹 ∈ (Base‘𝐾)) |
| 20 | | simp21l 1291 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑆 ∈ 𝐴) |
| 21 | 6, 7, 8 | hlatjcl 39385 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 22 | 2, 20, 12, 21 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 23 | 6, 15 | lhpbase 40017 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 24 | 11, 23 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑊 ∈ (Base‘𝐾)) |
| 25 | 6, 14 | latmcl 18450 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 ∨ 𝑇) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 26 | 3, 22, 24, 25 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) ∈ (Base‘𝐾)) |
| 27 | 6, 7 | latjcl 18449 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 ∨ 𝑇) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊)) ∈ (Base‘𝐾)) |
| 28 | 3, 19, 26, 27 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊)) ∈ (Base‘𝐾)) |
| 29 | 6, 13, 14 | latmle2 18475 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) ≤ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) |
| 30 | 3, 10, 28, 29 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) ≤ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) |
| 31 | | simp21 1207 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
| 32 | | simp3l 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑆 ≠ 𝑇) |
| 33 | | simp23l 1295 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑉 ∈ 𝐴) |
| 34 | | simp23r 1296 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑉 ≤ 𝑊) |
| 35 | | simp3r 1203 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑆 ≤ (𝑇 ∨ 𝑉)) |
| 36 | 7, 8 | hlatjcom 39386 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑇 ∨ 𝑉) = (𝑉 ∨ 𝑇)) |
| 37 | 2, 12, 33, 36 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝑇 ∨ 𝑉) = (𝑉 ∨ 𝑇)) |
| 38 | 35, 37 | breqtrd 5145 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑆 ≤ (𝑉 ∨ 𝑇)) |
| 39 | | hlcvl 39377 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| 40 | 2, 39 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝐾 ∈ CvLat) |
| 41 | 13, 7, 8 | cvlatexch2 39355 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑆 ≠ 𝑇) → (𝑆 ≤ (𝑉 ∨ 𝑇) → 𝑉 ≤ (𝑆 ∨ 𝑇))) |
| 42 | 40, 20, 33, 12, 32, 41 | syl131anc 1385 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝑆 ≤ (𝑉 ∨ 𝑇) → 𝑉 ≤ (𝑆 ∨ 𝑇))) |
| 43 | 38, 42 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑉 ≤ (𝑆 ∨ 𝑇)) |
| 44 | | eqid 2735 |
. . . . . 6
⊢ ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝑆 ∨ 𝑇) ∧ 𝑊) |
| 45 | 13, 7, 14, 8, 15, 44 | cdleme22aa 40358 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑆 ∨ 𝑇))) → 𝑉 = ((𝑆 ∨ 𝑇) ∧ 𝑊)) |
| 46 | 2, 11, 31, 12, 32, 33, 34, 43, 45 | syl233anc 1401 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑉 = ((𝑆 ∨ 𝑇) ∧ 𝑊)) |
| 47 | 46 | oveq2d 7421 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → (𝐹 ∨ 𝑉) = (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) |
| 48 | 30, 47 | breqtrrd 5147 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑇) ∧ 𝑊))) ≤ (𝐹 ∨ 𝑉)) |
| 49 | 1, 48 | eqbrtrid 5154 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑆 ≠ 𝑇 ∧ 𝑆 ≤ (𝑇 ∨ 𝑉))) → 𝑁 ≤ (𝐹 ∨ 𝑉)) |