Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f Structured version   Visualization version   GIF version

Theorem cdleme22f 39020
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝑁 represent f(t), ft(s) respectively. If s t v, then ft(s) f(t) v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22f.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme22f.f 𝐹 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme22f.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme22f ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑁 (𝐹 𝑉))

Proof of Theorem cdleme22f
StepHypRef Expression
1 cdleme22f.n . 2 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑇) 𝑊)))
2 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ HL)
32hllatd 38037 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ Lat)
4 simp12l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑃𝐴)
5 simp13l 1288 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑄𝐴)
6 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 cdleme22.j . . . . . 6 = (join‘𝐾)
8 cdleme22.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 38040 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp11r 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑊𝐻)
12 simp22 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑇𝐴)
13 cdleme22.l . . . . . . 7 = (le‘𝐾)
14 cdleme22.m . . . . . . 7 = (meet‘𝐾)
15 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
16 cdleme22f.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
17 cdleme22f.f . . . . . . 7 𝐹 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
1813, 7, 14, 8, 15, 16, 17, 6cdleme1b 38900 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → 𝐹 ∈ (Base‘𝐾))
192, 11, 4, 5, 12, 18syl23anc 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐹 ∈ (Base‘𝐾))
20 simp21l 1290 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆𝐴)
216, 7, 8hlatjcl 38040 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
222, 20, 12, 21syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑆 𝑇) ∈ (Base‘𝐾))
236, 15lhpbase 38672 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2411, 23syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑊 ∈ (Base‘𝐾))
256, 14latmcl 18375 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑆 𝑇) 𝑊) ∈ (Base‘𝐾))
263, 22, 24, 25syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑆 𝑇) 𝑊) ∈ (Base‘𝐾))
276, 7latjcl 18374 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑆 𝑇) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑆 𝑇) 𝑊)) ∈ (Base‘𝐾))
283, 19, 26, 27syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝐹 ((𝑆 𝑇) 𝑊)) ∈ (Base‘𝐾))
296, 13, 14latmle2 18400 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑆 𝑇) 𝑊)) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑇) 𝑊))) (𝐹 ((𝑆 𝑇) 𝑊)))
303, 10, 28, 29syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑇) 𝑊))) (𝐹 ((𝑆 𝑇) 𝑊)))
31 simp21 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
32 simp3l 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆𝑇)
33 simp23l 1294 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉𝐴)
34 simp23r 1295 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 𝑊)
35 simp3r 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆 (𝑇 𝑉))
367, 8hlatjcom 38041 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑉𝐴) → (𝑇 𝑉) = (𝑉 𝑇))
372, 12, 33, 36syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑇 𝑉) = (𝑉 𝑇))
3835, 37breqtrd 5167 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑆 (𝑉 𝑇))
39 hlcvl 38032 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
402, 39syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝐾 ∈ CvLat)
4113, 7, 8cvlatexch2 38010 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑉𝐴𝑇𝐴) ∧ 𝑆𝑇) → (𝑆 (𝑉 𝑇) → 𝑉 (𝑆 𝑇)))
4240, 20, 33, 12, 32, 41syl131anc 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝑆 (𝑉 𝑇) → 𝑉 (𝑆 𝑇)))
4338, 42mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 (𝑆 𝑇))
44 eqid 2731 . . . . . 6 ((𝑆 𝑇) 𝑊) = ((𝑆 𝑇) 𝑊)
4513, 7, 14, 8, 15, 44cdleme22aa 39013 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑆𝑇) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑆 𝑇))) → 𝑉 = ((𝑆 𝑇) 𝑊))
462, 11, 31, 12, 32, 33, 34, 43, 45syl233anc 1399 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑉 = ((𝑆 𝑇) 𝑊))
4746oveq2d 7409 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → (𝐹 𝑉) = (𝐹 ((𝑆 𝑇) 𝑊)))
4830, 47breqtrrd 5169 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → ((𝑃 𝑄) (𝐹 ((𝑆 𝑇) 𝑊))) (𝐹 𝑉))
491, 48eqbrtrid 5176 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑇𝑆 (𝑇 𝑉))) → 𝑁 (𝐹 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5141  cfv 6532  (class class class)co 7393  Basecbs 17126  lecple 17186  joincjn 18246  meetcmee 18247  Latclat 18366  Atomscatm 37936  CvLatclc 37938  HLchlt 38023  LHypclh 38658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 37849  df-ol 37851  df-oml 37852  df-covers 37939  df-ats 37940  df-atl 37971  df-cvlat 37995  df-hlat 38024  df-lhyp 38662
This theorem is referenced by:  cdleme22f2  39021  cdleme26fALTN  39036  cdleme26f  39037
  Copyright terms: Public domain W3C validator