Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | 2llnj.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
3 | | eqid 2738 |
. . . . . . . 8
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
4 | | 2llnj.n |
. . . . . . . 8
⊢ 𝑁 = (LLines‘𝐾) |
5 | 1, 2, 3, 4 | islln2 37525 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))))) |
6 | | simpr 485 |
. . . . . . 7
⊢ ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) |
7 | 5, 6 | syl6bi 252 |
. . . . . 6
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)))) |
8 | 1, 2, 3, 4 | islln2 37525 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))))) |
9 | | simpr 485 |
. . . . . . 7
⊢ ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))) |
10 | 8, 9 | syl6bi 252 |
. . . . . 6
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) |
11 | 7, 10 | anim12d 609 |
. . . . 5
⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))))) |
12 | 11 | imp 407 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) |
13 | 12 | 3adantr3 1170 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) |
14 | 13 | 3adant3 1131 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) |
15 | | simp2rr 1242 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑋 = (𝑞 ∨ 𝑟)) |
16 | | simp3rr 1246 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑌 = (𝑠 ∨ 𝑡)) |
17 | 15, 16 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → (𝑋 ∨ 𝑌) = ((𝑞 ∨ 𝑟) ∨ (𝑠 ∨ 𝑡))) |
18 | | simp13 1204 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) |
19 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = (𝑞 ∨ 𝑟) → (𝑋 ≤ 𝑊 ↔ (𝑞 ∨ 𝑟) ≤ 𝑊)) |
20 | | neeq1 3006 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = (𝑞 ∨ 𝑟) → (𝑋 ≠ 𝑌 ↔ (𝑞 ∨ 𝑟) ≠ 𝑌)) |
21 | 19, 20 | 3anbi13d 1437 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = (𝑞 ∨ 𝑟) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ 𝑌))) |
22 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = (𝑠 ∨ 𝑡) → (𝑌 ≤ 𝑊 ↔ (𝑠 ∨ 𝑡) ≤ 𝑊)) |
23 | | neeq2 3007 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = (𝑠 ∨ 𝑡) → ((𝑞 ∨ 𝑟) ≠ 𝑌 ↔ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡))) |
24 | 22, 23 | 3anbi23d 1438 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = (𝑠 ∨ 𝑡) → (((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ 𝑌) ↔ ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡)))) |
25 | 21, 24 | sylan9bb 510 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = (𝑞 ∨ 𝑟) ∧ 𝑌 = (𝑠 ∨ 𝑡)) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡)))) |
26 | 15, 16, 25 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡)))) |
27 | 18, 26 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡))) |
28 | | simp11 1202 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝐾 ∈ HL) |
29 | | simp123 1306 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑊 ∈ 𝑃) |
30 | | simp2ll 1239 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾)) |
31 | | simp2lr 1240 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾)) |
32 | | simp2rl 1241 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑞 ≠ 𝑟) |
33 | | simp3ll 1243 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾)) |
34 | | simp3lr 1244 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾)) |
35 | | simp3rl 1245 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → 𝑠 ≠ 𝑡) |
36 | | 2llnj.l |
. . . . . . . . . . . . . 14
⊢ ≤ =
(le‘𝐾) |
37 | | 2llnj.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (LPlanes‘𝐾) |
38 | 36, 2, 3, 4, 37 | 2llnjaN 37580 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞 ≠ 𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠 ≠ 𝑡)) ∧ ((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡))) → ((𝑞 ∨ 𝑟) ∨ (𝑠 ∨ 𝑡)) = 𝑊) |
39 | 38 | ex 413 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞 ≠ 𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠 ≠ 𝑡)) → (((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡)) → ((𝑞 ∨ 𝑟) ∨ (𝑠 ∨ 𝑡)) = 𝑊)) |
40 | 28, 29, 30, 31, 32, 33, 34, 35, 39 | syl233anc 1398 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → (((𝑞 ∨ 𝑟) ≤ 𝑊 ∧ (𝑠 ∨ 𝑡) ≤ 𝑊 ∧ (𝑞 ∨ 𝑟) ≠ (𝑠 ∨ 𝑡)) → ((𝑞 ∨ 𝑟) ∨ (𝑠 ∨ 𝑡)) = 𝑊)) |
41 | 27, 40 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → ((𝑞 ∨ 𝑟) ∨ (𝑠 ∨ 𝑡)) = 𝑊) |
42 | 17, 41 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)))) → (𝑋 ∨ 𝑌) = 𝑊) |
43 | 42 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))) → (𝑋 ∨ 𝑌) = 𝑊))) |
44 | 43 | 3impib 1115 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))) → (𝑋 ∨ 𝑌) = 𝑊)) |
45 | 44 | expd 416 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)) → (𝑋 ∨ 𝑌) = 𝑊))) |
46 | 45 | rexlimdvv 3222 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)) → (𝑋 ∨ 𝑌) = 𝑊)) |
47 | 46 | 3exp 1118 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)) → (𝑋 ∨ 𝑌) = 𝑊)))) |
48 | 47 | rexlimdvv 3222 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡)) → (𝑋 ∨ 𝑌) = 𝑊))) |
49 | 48 | impd 411 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ 𝑋 = (𝑞 ∨ 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠 ≠ 𝑡 ∧ 𝑌 = (𝑠 ∨ 𝑡))) → (𝑋 ∨ 𝑌) = 𝑊)) |
50 | 14, 49 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∨ 𝑌) = 𝑊) |