Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 39676
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l = (le‘𝐾)
2llnj.j = (join‘𝐾)
2llnj.n 𝑁 = (LLines‘𝐾)
2llnj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2llnjN
Dummy variables 𝑟 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2llnj.j . . . . . . . 8 = (join‘𝐾)
3 eqid 2733 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
4 2llnj.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln2 39620 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))))
6 simpr 484 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))
75, 6biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))))
81, 2, 3, 4islln2 39620 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
9 simpr 484 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))
108, 9biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
117, 10anim12d 609 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑁𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
1211imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
13123adantr3 1172 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
14133adant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
15 simp2rr 1244 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑋 = (𝑞 𝑟))
16 simp3rr 1248 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑌 = (𝑠 𝑡))
1715, 16oveq12d 7373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = ((𝑞 𝑟) (𝑠 𝑡)))
18 simp13 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
19 breq1 5098 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋 𝑊 ↔ (𝑞 𝑟) 𝑊))
20 neeq1 2992 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋𝑌 ↔ (𝑞 𝑟) ≠ 𝑌))
2119, 203anbi13d 1440 . . . . . . . . . . . . . 14 (𝑋 = (𝑞 𝑟) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌)))
22 breq1 5098 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → (𝑌 𝑊 ↔ (𝑠 𝑡) 𝑊))
23 neeq2 2993 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → ((𝑞 𝑟) ≠ 𝑌 ↔ (𝑞 𝑟) ≠ (𝑠 𝑡)))
2422, 233anbi23d 1441 . . . . . . . . . . . . . 14 (𝑌 = (𝑠 𝑡) → (((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2521, 24sylan9bb 509 . . . . . . . . . . . . 13 ((𝑋 = (𝑞 𝑟) ∧ 𝑌 = (𝑠 𝑡)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2615, 16, 25syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2718, 26mpbid 232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)))
28 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝐾 ∈ HL)
29 simp123 1308 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑊𝑃)
30 simp2ll 1241 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾))
31 simp2lr 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾))
32 simp2rl 1243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞𝑟)
33 simp3ll 1245 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾))
34 simp3lr 1246 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾))
35 simp3rl 1247 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠𝑡)
36 2llnj.l . . . . . . . . . . . . . 14 = (le‘𝐾)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanes‘𝐾)
3836, 2, 3, 4, 372llnjaN 39675 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) ∧ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
3938ex 412 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1401 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
4217, 41eqtrd 2768 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = 𝑊)
43423exp 1119 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊)))
44433impib 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
4544expd 415 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4645rexlimdvv 3190 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))
47463exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))))
4847rexlimdvv 3190 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4948impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wrex 3058   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  lecple 17178  joincjn 18227  Atomscatm 39372  HLchlt 39459  LLinesclln 39600  LPlanesclpl 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-lat 18348  df-clat 18415  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608
This theorem is referenced by:  2llnm2N  39677
  Copyright terms: Public domain W3C validator