Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 39524
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l = (le‘𝐾)
2llnj.j = (join‘𝐾)
2llnj.n 𝑁 = (LLines‘𝐾)
2llnj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2llnjN
Dummy variables 𝑟 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2llnj.j . . . . . . . 8 = (join‘𝐾)
3 eqid 2740 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
4 2llnj.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln2 39468 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))))
6 simpr 484 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))
75, 6biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))))
81, 2, 3, 4islln2 39468 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
9 simpr 484 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))
108, 9biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
117, 10anim12d 608 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑁𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
1211imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
13123adantr3 1171 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
14133adant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
15 simp2rr 1243 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑋 = (𝑞 𝑟))
16 simp3rr 1247 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑌 = (𝑠 𝑡))
1715, 16oveq12d 7466 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = ((𝑞 𝑟) (𝑠 𝑡)))
18 simp13 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
19 breq1 5169 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋 𝑊 ↔ (𝑞 𝑟) 𝑊))
20 neeq1 3009 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋𝑌 ↔ (𝑞 𝑟) ≠ 𝑌))
2119, 203anbi13d 1438 . . . . . . . . . . . . . 14 (𝑋 = (𝑞 𝑟) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌)))
22 breq1 5169 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → (𝑌 𝑊 ↔ (𝑠 𝑡) 𝑊))
23 neeq2 3010 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → ((𝑞 𝑟) ≠ 𝑌 ↔ (𝑞 𝑟) ≠ (𝑠 𝑡)))
2422, 233anbi23d 1439 . . . . . . . . . . . . . 14 (𝑌 = (𝑠 𝑡) → (((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2521, 24sylan9bb 509 . . . . . . . . . . . . 13 ((𝑋 = (𝑞 𝑟) ∧ 𝑌 = (𝑠 𝑡)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2615, 16, 25syl2anc 583 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2718, 26mpbid 232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)))
28 simp11 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝐾 ∈ HL)
29 simp123 1307 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑊𝑃)
30 simp2ll 1240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾))
31 simp2lr 1241 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾))
32 simp2rl 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞𝑟)
33 simp3ll 1244 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾))
34 simp3lr 1245 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾))
35 simp3rl 1246 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠𝑡)
36 2llnj.l . . . . . . . . . . . . . 14 = (le‘𝐾)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanes‘𝐾)
3836, 2, 3, 4, 372llnjaN 39523 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) ∧ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
3938ex 412 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1399 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
4217, 41eqtrd 2780 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = 𝑊)
43423exp 1119 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊)))
44433impib 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
4544expd 415 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4645rexlimdvv 3218 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))
47463exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))))
4847rexlimdvv 3218 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4948impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Atomscatm 39219  HLchlt 39306  LLinesclln 39448  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456
This theorem is referenced by:  2llnm2N  39525
  Copyright terms: Public domain W3C validator