Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 38741
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l ≀ = (leβ€˜πΎ)
2llnj.j ∨ = (joinβ€˜πΎ)
2llnj.n 𝑁 = (LLinesβ€˜πΎ)
2llnj.p 𝑃 = (LPlanesβ€˜πΎ)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)

Proof of Theorem 2llnjN
Dummy variables π‘Ÿ π‘ž 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 2llnj.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
3 eqid 2730 . . . . . . . 8 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
4 2llnj.n . . . . . . . 8 𝑁 = (LLinesβ€˜πΎ)
51, 2, 3, 4islln2 38685 . . . . . . 7 (𝐾 ∈ HL β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ (Baseβ€˜πΎ) ∧ βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)))))
6 simpr 483 . . . . . . 7 ((𝑋 ∈ (Baseβ€˜πΎ) ∧ βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) β†’ βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)))
75, 6syl6bi 252 . . . . . 6 (𝐾 ∈ HL β†’ (𝑋 ∈ 𝑁 β†’ βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))))
81, 2, 3, 4islln2 38685 . . . . . . 7 (𝐾 ∈ HL β†’ (π‘Œ ∈ 𝑁 ↔ (π‘Œ ∈ (Baseβ€˜πΎ) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))))
9 simpr 483 . . . . . . 7 ((π‘Œ ∈ (Baseβ€˜πΎ) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))) β†’ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))
108, 9syl6bi 252 . . . . . 6 (𝐾 ∈ HL β†’ (π‘Œ ∈ 𝑁 β†’ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))))
117, 10anim12d 607 . . . . 5 (𝐾 ∈ HL β†’ ((𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁) β†’ (βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))))
1211imp 405 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁)) β†’ (βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))))
13123adantr3 1169 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃)) β†’ (βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))))
14133adant3 1130 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))))
15 simp2rr 1241 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ 𝑋 = (π‘ž ∨ π‘Ÿ))
16 simp3rr 1245 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ π‘Œ = (𝑠 ∨ 𝑑))
1715, 16oveq12d 7429 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ (𝑋 ∨ π‘Œ) = ((π‘ž ∨ π‘Ÿ) ∨ (𝑠 ∨ 𝑑)))
18 simp13 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ))
19 breq1 5150 . . . . . . . . . . . . . . 15 (𝑋 = (π‘ž ∨ π‘Ÿ) β†’ (𝑋 ≀ π‘Š ↔ (π‘ž ∨ π‘Ÿ) ≀ π‘Š))
20 neeq1 3001 . . . . . . . . . . . . . . 15 (𝑋 = (π‘ž ∨ π‘Ÿ) β†’ (𝑋 β‰  π‘Œ ↔ (π‘ž ∨ π‘Ÿ) β‰  π‘Œ))
2119, 203anbi13d 1436 . . . . . . . . . . . . . 14 (𝑋 = (π‘ž ∨ π‘Ÿ) β†’ ((𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ) ↔ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  π‘Œ)))
22 breq1 5150 . . . . . . . . . . . . . . 15 (π‘Œ = (𝑠 ∨ 𝑑) β†’ (π‘Œ ≀ π‘Š ↔ (𝑠 ∨ 𝑑) ≀ π‘Š))
23 neeq2 3002 . . . . . . . . . . . . . . 15 (π‘Œ = (𝑠 ∨ 𝑑) β†’ ((π‘ž ∨ π‘Ÿ) β‰  π‘Œ ↔ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑)))
2422, 233anbi23d 1437 . . . . . . . . . . . . . 14 (π‘Œ = (𝑠 ∨ 𝑑) β†’ (((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  π‘Œ) ↔ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑))))
2521, 24sylan9bb 508 . . . . . . . . . . . . 13 ((𝑋 = (π‘ž ∨ π‘Ÿ) ∧ π‘Œ = (𝑠 ∨ 𝑑)) β†’ ((𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ) ↔ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑))))
2615, 16, 25syl2anc 582 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ ((𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ) ↔ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑))))
2718, 26mpbid 231 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑)))
28 simp11 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ 𝐾 ∈ HL)
29 simp123 1305 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ π‘Š ∈ 𝑃)
30 simp2ll 1238 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ π‘ž ∈ (Atomsβ€˜πΎ))
31 simp2lr 1239 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ π‘Ÿ ∈ (Atomsβ€˜πΎ))
32 simp2rl 1240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ π‘ž β‰  π‘Ÿ)
33 simp3ll 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ 𝑠 ∈ (Atomsβ€˜πΎ))
34 simp3lr 1243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ 𝑑 ∈ (Atomsβ€˜πΎ))
35 simp3rl 1244 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ 𝑠 β‰  𝑑)
36 2llnj.l . . . . . . . . . . . . . 14 ≀ = (leβ€˜πΎ)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanesβ€˜πΎ)
3836, 2, 3, 4, 372llnjaN 38740 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝑃) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ) ∧ π‘ž β‰  π‘Ÿ) ∧ (𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ) ∧ 𝑠 β‰  𝑑)) ∧ ((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑))) β†’ ((π‘ž ∨ π‘Ÿ) ∨ (𝑠 ∨ 𝑑)) = π‘Š)
3938ex 411 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝑃) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ) ∧ π‘ž β‰  π‘Ÿ) ∧ (𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ) ∧ 𝑠 β‰  𝑑)) β†’ (((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑)) β†’ ((π‘ž ∨ π‘Ÿ) ∨ (𝑠 ∨ 𝑑)) = π‘Š))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1397 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ (((π‘ž ∨ π‘Ÿ) ≀ π‘Š ∧ (𝑠 ∨ 𝑑) ≀ π‘Š ∧ (π‘ž ∨ π‘Ÿ) β‰  (𝑠 ∨ 𝑑)) β†’ ((π‘ž ∨ π‘Ÿ) ∨ (𝑠 ∨ 𝑑)) = π‘Š))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ ((π‘ž ∨ π‘Ÿ) ∨ (𝑠 ∨ 𝑑)) = π‘Š)
4217, 41eqtrd 2770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) ∧ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)))) β†’ (𝑋 ∨ π‘Œ) = π‘Š)
43423exp 1117 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) β†’ (((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))) β†’ (𝑋 ∨ π‘Œ) = π‘Š)))
44433impib 1114 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) β†’ (((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) ∧ (𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))) β†’ (𝑋 ∨ π‘Œ) = π‘Š))
4544expd 414 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) β†’ ((𝑠 ∈ (Atomsβ€˜πΎ) ∧ 𝑑 ∈ (Atomsβ€˜πΎ)) β†’ ((𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)))
4645rexlimdvv 3208 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) ∧ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ))) β†’ (βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)) β†’ (𝑋 ∨ π‘Œ) = π‘Š))
47463exp 1117 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ ((π‘ž ∈ (Atomsβ€˜πΎ) ∧ π‘Ÿ ∈ (Atomsβ€˜πΎ)) β†’ ((π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) β†’ (βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)) β†’ (𝑋 ∨ π‘Œ) = π‘Š))))
4847rexlimdvv 3208 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) β†’ (βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)))
4948impd 409 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ ((βˆƒπ‘ž ∈ (Atomsβ€˜πΎ)βˆƒπ‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘ž β‰  π‘Ÿ ∧ 𝑋 = (π‘ž ∨ π‘Ÿ)) ∧ βˆƒπ‘  ∈ (Atomsβ€˜πΎ)βˆƒπ‘‘ ∈ (Atomsβ€˜πΎ)(𝑠 β‰  𝑑 ∧ π‘Œ = (𝑠 ∨ 𝑑))) β†’ (𝑋 ∨ π‘Œ) = π‘Š))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ π‘Œ ∈ 𝑁 ∧ π‘Š ∈ 𝑃) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑋 β‰  π‘Œ)) β†’ (𝑋 ∨ π‘Œ) = π‘Š)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  Atomscatm 38436  HLchlt 38523  LLinesclln 38665  LPlanesclpl 38666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673
This theorem is referenced by:  2llnm2N  38742
  Copyright terms: Public domain W3C validator