Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 39532
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l = (le‘𝐾)
2llnj.j = (join‘𝐾)
2llnj.n 𝑁 = (LLines‘𝐾)
2llnj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2llnjN
Dummy variables 𝑟 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2llnj.j . . . . . . . 8 = (join‘𝐾)
3 eqid 2735 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
4 2llnj.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln2 39476 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))))
6 simpr 484 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))
75, 6biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))))
81, 2, 3, 4islln2 39476 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
9 simpr 484 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))
108, 9biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
117, 10anim12d 609 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑁𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
1211imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
13123adantr3 1172 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
14133adant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
15 simp2rr 1244 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑋 = (𝑞 𝑟))
16 simp3rr 1248 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑌 = (𝑠 𝑡))
1715, 16oveq12d 7421 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = ((𝑞 𝑟) (𝑠 𝑡)))
18 simp13 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
19 breq1 5122 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋 𝑊 ↔ (𝑞 𝑟) 𝑊))
20 neeq1 2994 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋𝑌 ↔ (𝑞 𝑟) ≠ 𝑌))
2119, 203anbi13d 1440 . . . . . . . . . . . . . 14 (𝑋 = (𝑞 𝑟) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌)))
22 breq1 5122 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → (𝑌 𝑊 ↔ (𝑠 𝑡) 𝑊))
23 neeq2 2995 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → ((𝑞 𝑟) ≠ 𝑌 ↔ (𝑞 𝑟) ≠ (𝑠 𝑡)))
2422, 233anbi23d 1441 . . . . . . . . . . . . . 14 (𝑌 = (𝑠 𝑡) → (((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2521, 24sylan9bb 509 . . . . . . . . . . . . 13 ((𝑋 = (𝑞 𝑟) ∧ 𝑌 = (𝑠 𝑡)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2615, 16, 25syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2718, 26mpbid 232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)))
28 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝐾 ∈ HL)
29 simp123 1308 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑊𝑃)
30 simp2ll 1241 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾))
31 simp2lr 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾))
32 simp2rl 1243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞𝑟)
33 simp3ll 1245 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾))
34 simp3lr 1246 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾))
35 simp3rl 1247 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠𝑡)
36 2llnj.l . . . . . . . . . . . . . 14 = (le‘𝐾)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanes‘𝐾)
3836, 2, 3, 4, 372llnjaN 39531 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) ∧ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
3938ex 412 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1401 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
4217, 41eqtrd 2770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = 𝑊)
43423exp 1119 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊)))
44433impib 1116 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
4544expd 415 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4645rexlimdvv 3197 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))
47463exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))))
4847rexlimdvv 3197 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4948impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  Atomscatm 39227  HLchlt 39314  LLinesclln 39456  LPlanesclpl 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-llines 39463  df-lplanes 39464
This theorem is referenced by:  2llnm2N  39533
  Copyright terms: Public domain W3C validator