Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 36863
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l = (le‘𝐾)
2llnj.j = (join‘𝐾)
2llnj.n 𝑁 = (LLines‘𝐾)
2llnj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2llnjN
Dummy variables 𝑟 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2llnj.j . . . . . . . 8 = (join‘𝐾)
3 eqid 2798 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
4 2llnj.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln2 36807 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))))
6 simpr 488 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))
75, 6syl6bi 256 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))))
81, 2, 3, 4islln2 36807 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
9 simpr 488 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))
108, 9syl6bi 256 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
117, 10anim12d 611 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑁𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
1211imp 410 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
13123adantr3 1168 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
14133adant3 1129 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
15 simp2rr 1240 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑋 = (𝑞 𝑟))
16 simp3rr 1244 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑌 = (𝑠 𝑡))
1715, 16oveq12d 7153 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = ((𝑞 𝑟) (𝑠 𝑡)))
18 simp13 1202 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
19 breq1 5033 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋 𝑊 ↔ (𝑞 𝑟) 𝑊))
20 neeq1 3049 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋𝑌 ↔ (𝑞 𝑟) ≠ 𝑌))
2119, 203anbi13d 1435 . . . . . . . . . . . . . 14 (𝑋 = (𝑞 𝑟) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌)))
22 breq1 5033 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → (𝑌 𝑊 ↔ (𝑠 𝑡) 𝑊))
23 neeq2 3050 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → ((𝑞 𝑟) ≠ 𝑌 ↔ (𝑞 𝑟) ≠ (𝑠 𝑡)))
2422, 233anbi23d 1436 . . . . . . . . . . . . . 14 (𝑌 = (𝑠 𝑡) → (((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2521, 24sylan9bb 513 . . . . . . . . . . . . 13 ((𝑋 = (𝑞 𝑟) ∧ 𝑌 = (𝑠 𝑡)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2615, 16, 25syl2anc 587 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2718, 26mpbid 235 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)))
28 simp11 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝐾 ∈ HL)
29 simp123 1304 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑊𝑃)
30 simp2ll 1237 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾))
31 simp2lr 1238 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾))
32 simp2rl 1239 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞𝑟)
33 simp3ll 1241 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾))
34 simp3lr 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾))
35 simp3rl 1243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠𝑡)
36 2llnj.l . . . . . . . . . . . . . 14 = (le‘𝐾)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanes‘𝐾)
3836, 2, 3, 4, 372llnjaN 36862 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) ∧ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
3938ex 416 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1396 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
4217, 41eqtrd 2833 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = 𝑊)
43423exp 1116 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊)))
44433impib 1113 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
4544expd 419 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4645rexlimdvv 3252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))
47463exp 1116 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))))
4847rexlimdvv 3252 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4948impd 414 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Atomscatm 36559  HLchlt 36646  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by:  2llnm2N  36864
  Copyright terms: Public domain W3C validator