Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnjN Structured version   Visualization version   GIF version

Theorem 2llnjN 37581
Description: The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnj.l = (le‘𝐾)
2llnj.j = (join‘𝐾)
2llnj.n 𝑁 = (LLines‘𝐾)
2llnj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnjN ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2llnjN
Dummy variables 𝑟 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2llnj.j . . . . . . . 8 = (join‘𝐾)
3 eqid 2738 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
4 2llnj.n . . . . . . . 8 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln2 37525 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))))
6 simpr 485 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)))
75, 6syl6bi 252 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑁 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟))))
81, 2, 3, 4islln2 37525 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
9 simpr 485 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))
108, 9syl6bi 252 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑁 → ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
117, 10anim12d 609 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑁𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)))))
1211imp 407 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
13123adantr3 1170 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
14133adant3 1131 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))))
15 simp2rr 1242 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑋 = (𝑞 𝑟))
16 simp3rr 1246 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑌 = (𝑠 𝑡))
1715, 16oveq12d 7293 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = ((𝑞 𝑟) (𝑠 𝑡)))
18 simp13 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
19 breq1 5077 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋 𝑊 ↔ (𝑞 𝑟) 𝑊))
20 neeq1 3006 . . . . . . . . . . . . . . 15 (𝑋 = (𝑞 𝑟) → (𝑋𝑌 ↔ (𝑞 𝑟) ≠ 𝑌))
2119, 203anbi13d 1437 . . . . . . . . . . . . . 14 (𝑋 = (𝑞 𝑟) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌)))
22 breq1 5077 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → (𝑌 𝑊 ↔ (𝑠 𝑡) 𝑊))
23 neeq2 3007 . . . . . . . . . . . . . . 15 (𝑌 = (𝑠 𝑡) → ((𝑞 𝑟) ≠ 𝑌 ↔ (𝑞 𝑟) ≠ (𝑠 𝑡)))
2422, 233anbi23d 1438 . . . . . . . . . . . . . 14 (𝑌 = (𝑠 𝑡) → (((𝑞 𝑟) 𝑊𝑌 𝑊 ∧ (𝑞 𝑟) ≠ 𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2521, 24sylan9bb 510 . . . . . . . . . . . . 13 ((𝑋 = (𝑞 𝑟) ∧ 𝑌 = (𝑠 𝑡)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2615, 16, 25syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))))
2718, 26mpbid 231 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)))
28 simp11 1202 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝐾 ∈ HL)
29 simp123 1306 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑊𝑃)
30 simp2ll 1239 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞 ∈ (Atoms‘𝐾))
31 simp2lr 1240 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑟 ∈ (Atoms‘𝐾))
32 simp2rl 1241 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑞𝑟)
33 simp3ll 1243 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠 ∈ (Atoms‘𝐾))
34 simp3lr 1244 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑡 ∈ (Atoms‘𝐾))
35 simp3rl 1245 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → 𝑠𝑡)
36 2llnj.l . . . . . . . . . . . . . 14 = (le‘𝐾)
37 2llnj.p . . . . . . . . . . . . . 14 𝑃 = (LPlanes‘𝐾)
3836, 2, 3, 4, 372llnjaN 37580 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) ∧ ((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
3938ex 413 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑞𝑟) ∧ (𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾) ∧ 𝑠𝑡)) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4028, 29, 30, 31, 32, 33, 34, 35, 39syl233anc 1398 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (((𝑞 𝑟) 𝑊 ∧ (𝑠 𝑡) 𝑊 ∧ (𝑞 𝑟) ≠ (𝑠 𝑡)) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊))
4127, 40mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → ((𝑞 𝑟) (𝑠 𝑡)) = 𝑊)
4217, 41eqtrd 2778 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) ∧ ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡)))) → (𝑋 𝑌) = 𝑊)
43423exp 1118 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊)))
44433impib 1115 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
4544expd 416 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → ((𝑠 ∈ (Atoms‘𝐾) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4645rexlimdvv 3222 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑋 = (𝑞 𝑟))) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))
47463exp 1118 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊))))
4847rexlimdvv 3222 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) → (∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡)) → (𝑋 𝑌) = 𝑊)))
4948impd 411 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑋 = (𝑞 𝑟)) ∧ ∃𝑠 ∈ (Atoms‘𝐾)∃𝑡 ∈ (Atoms‘𝐾)(𝑠𝑡𝑌 = (𝑠 𝑡))) → (𝑋 𝑌) = 𝑊))
5014, 49mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  2llnm2N  37582
  Copyright terms: Public domain W3C validator