Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p3 42035
Description: There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p3.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p3.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p3.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p3 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑁(𝑟)

Proof of Theorem aks4d1p3
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p3.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
2 aks4d1p3.2 . . . . . 6 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p3.3 . . . . . 6 𝐵 = (⌈‘((2 logb 𝑁)↑5))
41, 2, 3aks4d1p1 42033 . . . . 5 (𝜑𝐴 < (2↑𝐵))
54adantr 480 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 < (2↑𝐵))
6 2re 12367 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
83a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
9 2pos 12396 . . . . . . . . . . . . . . 15 0 < 2
109a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
11 eluzelz 12913 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
121, 11syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
1312zred 12747 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
14 0red 11293 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
15 3re 12373 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
17 3pos 12398 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12916 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2114, 16, 13, 18, 20ltletrd 11450 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
22 1red 11291 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23 1lt2 12464 . . . . . . . . . . . . . . . . 17 1 < 2
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2522, 24ltned 11426 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2625necomd 3002 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
277, 10, 13, 21, 26relogbcld 41929 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
28 5nn0 12573 . . . . . . . . . . . . . 14 5 ∈ ℕ0
2928a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
3027, 29reexpcld 14213 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
31 ceilcl 13893 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
338, 32eqeltrd 2844 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
3432zred 12747 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
358, 34eqeltrd 2844 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
36 7re 12386 . . . . . . . . . . . . . . 15 7 ∈ ℝ
3736a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 7 ∈ ℝ)
38 7pos 12404 . . . . . . . . . . . . . . 15 0 < 7
3938a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 7)
4013, 203lexlogpow5ineq3 42014 . . . . . . . . . . . . . 14 (𝜑 → 7 < ((2 logb 𝑁)↑5))
4114, 37, 30, 39, 40lttrd 11451 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 𝑁)↑5))
42 ceilge 13896 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4330, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4414, 30, 34, 41, 43ltletrd 11450 . . . . . . . . . . . 12 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
4544, 8breqtrrd 5194 . . . . . . . . . . 11 (𝜑 → 0 < 𝐵)
4614, 35, 45ltled 11438 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐵)
4733, 46jca 511 . . . . . . . . 9 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
48 elnn0z 12652 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
4947, 48sylibr 234 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
507, 49reexpcld 14213 . . . . . . 7 (𝜑 → (2↑𝐵) ∈ ℝ)
5150adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ∈ ℝ)
52 elfznn 13613 . . . . . . . . . . . . 13 (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℕ)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℕ)
5453nnzd 12666 . . . . . . . . . . 11 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℤ)
5554ex 412 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℤ))
5655ssrdv 4014 . . . . . . . . 9 (𝜑 → (1...𝐵) ⊆ ℤ)
57 fzfid 14024 . . . . . . . . 9 (𝜑 → (1...𝐵) ∈ Fin)
58 lcmfcl 16675 . . . . . . . . 9 (((1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (lcm‘(1...𝐵)) ∈ ℕ0)
5956, 57, 58syl2anc 583 . . . . . . . 8 (𝜑 → (lcm‘(1...𝐵)) ∈ ℕ0)
6059nn0red 12614 . . . . . . 7 (𝜑 → (lcm‘(1...𝐵)) ∈ ℝ)
6160adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℝ)
622a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
63 elnnz 12649 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6412, 21, 63sylanbrc 582 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
657, 10, 35, 45, 26relogbcld 41929 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 𝐵) ∈ ℝ)
6665flcld 13849 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
677, 10, 7, 10, 26relogbcld 41929 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ∈ ℝ)
68 0le1 11813 . . . . . . . . . . . . . . . . 17 0 ≤ 1
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
707recnd 11318 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
7114, 10gtned 11425 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
72 logbid1 26829 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
7370, 71, 26, 72syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
7473eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (2 logb 2))
7569, 74breqtrd 5192 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 2))
76 2z 12675 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
7776a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
787leidd 11856 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
79 2lt7 12483 . . . . . . . . . . . . . . . . . . 19 2 < 7
8079a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 7)
817, 37, 80ltled 11438 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 7)
8237, 30, 34, 40, 43ltletrd 11450 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
8382, 8breqtrrd 5194 . . . . . . . . . . . . . . . . . 18 (𝜑 → 7 < 𝐵)
8437, 35, 83ltled 11438 . . . . . . . . . . . . . . . . 17 (𝜑 → 7 ≤ 𝐵)
857, 37, 35, 81, 84letrd 11447 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝐵)
8677, 78, 7, 10, 35, 45, 85logblebd 41932 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
8714, 67, 65, 75, 86letrd 11447 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 𝐵))
88 0zd 12651 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℤ)
89 flge 13856 . . . . . . . . . . . . . . 15 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9065, 88, 89syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9187, 90mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
9266, 91jca 511 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
93 elnn0z 12652 . . . . . . . . . . . 12 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
9492, 93sylibr 234 . . . . . . . . . . 11 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9564, 94nnexpcld 14294 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
96 fzfid 14024 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
98 elfznn 13613 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9998adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12613 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
101 zexpcl 14127 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
10297, 100, 101syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
103 1zzd 12674 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
104102, 103zsubcld 12752 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
105 1cnd 11285 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℂ)
106105addridd 11490 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) = 1)
10722adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
108 1nn0 12569 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
109108a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
11013, 109reexpcld 14213 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁↑1) ∈ ℝ)
111110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ∈ ℝ)
112102zred 12747 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
113 1lt3 12466 . . . . . . . . . . . . . . . . . . . 20 1 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 3)
11522, 16, 13, 114, 20ltletrd 11450 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 𝑁)
11613recnd 11318 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
117116exp1d 14191 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁↑1) = 𝑁)
118117eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 = (𝑁↑1))
119115, 118breqtrd 5192 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 < (𝑁↑1))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁↑1))
12113adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
12264nnge1d 12341 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝑁)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ 𝑁)
124 elfzuz 13580 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ (ℤ‘1))
125124adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (ℤ‘1))
126121, 123, 125leexp2ad 14303 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ≤ (𝑁𝑘))
127107, 111, 112, 120, 126ltletrd 11450 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁𝑘))
128106, 127eqbrtrd 5188 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) < (𝑁𝑘))
12914adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 ∈ ℝ)
130107, 129, 112ltaddsub2d 11891 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((1 + 0) < (𝑁𝑘) ↔ 0 < ((𝑁𝑘) − 1)))
131128, 130mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 < ((𝑁𝑘) − 1))
132104, 131jca 511 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
133 elnnz 12649 . . . . . . . . . . . 12 (((𝑁𝑘) − 1) ∈ ℕ ↔ (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
134132, 133sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℕ)
13596, 134fprodnncl 16003 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℕ)
13695, 135nnmulcld 12346 . . . . . . . . 9 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℕ)
13762, 136eqeltrd 2844 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
138137nnred 12308 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
139138adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℝ)
1401, 2, 3aks4d1p2 42034 . . . . . . 7 (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
141140adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
142137nnzd 12666 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
143142adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℤ)
14456adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ⊆ ℤ)
145 fzfid 14024 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ∈ Fin)
146 lcmfdvdsb 16690 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
147143, 144, 145, 146syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
148147biimpd 229 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 → (lcm‘(1...𝐵)) ∥ 𝐴))
149148syldbl2 840 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∥ 𝐴)
15059nn0zd 12665 . . . . . . . . 9 (𝜑 → (lcm‘(1...𝐵)) ∈ ℤ)
151150adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℤ)
152137adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℕ)
153 dvdsle 16358 . . . . . . . 8 (((lcm‘(1...𝐵)) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
154151, 152, 153syl2anc 583 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
155149, 154mpd 15 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ≤ 𝐴)
15651, 61, 139, 141, 155letrd 11447 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ 𝐴)
15751, 139lenltd 11436 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((2↑𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (2↑𝐵)))
158156, 157mpbid 232 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ 𝐴 < (2↑𝐵))
1595, 158pm2.21dd 195 . . 3 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
160 simpr 484 . . 3 ((𝜑 ∧ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
161159, 160pm2.61dan 812 . 2 (𝜑 → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
162 rexnal 3106 . 2 (∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴 ↔ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
163161, 162sylibr 234 1 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  5c5 12351  7c7 12353  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cfl 13841  cceil 13842  cexp 14112  cprod 15951  cdvds 16302  lcmclcmf 16636   logb clogb 26825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-ceil 13844  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-lcm 16637  df-lcmf 16638  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-logb 26826
This theorem is referenced by:  aks4d1p4  42036  aks4d1p5  42037  aks4d1p7  42040  aks4d1p8  42044
  Copyright terms: Public domain W3C validator