| Step | Hyp | Ref
| Expression |
| 1 | | aks4d1p3.1 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
| 2 | | aks4d1p3.2 |
. . . . . 6
⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
| 3 | | aks4d1p3.3 |
. . . . . 6
⊢ 𝐵 = (⌈‘((2
logb 𝑁)↑5)) |
| 4 | 1, 2, 3 | aks4d1p1 42094 |
. . . . 5
⊢ (𝜑 → 𝐴 < (2↑𝐵)) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → 𝐴 < (2↑𝐵)) |
| 6 | | 2re 12319 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℝ) |
| 8 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
| 9 | | 2pos 12348 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
| 10 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) |
| 11 | | eluzelz 12867 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
| 12 | 1, 11 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 13 | 12 | zred 12702 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 14 | | 0red 11243 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℝ) |
| 15 | | 3re 12325 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ |
| 16 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 3 ∈
ℝ) |
| 17 | | 3pos 12350 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
3 |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < 3) |
| 19 | | eluzle 12870 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
| 20 | 1, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 3 ≤ 𝑁) |
| 21 | 14, 16, 13, 18, 20 | ltletrd 11400 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
| 22 | | 1red 11241 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
| 23 | | 1lt2 12416 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
2 |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 < 2) |
| 25 | 22, 24 | ltned 11376 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ≠ 2) |
| 26 | 25 | necomd 2988 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 1) |
| 27 | 7, 10, 13, 21, 26 | relogbcld 41991 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
| 28 | | 5nn0 12526 |
. . . . . . . . . . . . . 14
⊢ 5 ∈
ℕ0 |
| 29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 5 ∈
ℕ0) |
| 30 | 27, 29 | reexpcld 14186 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈
ℝ) |
| 31 | | ceilcl 13864 |
. . . . . . . . . . . 12
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℤ) |
| 33 | 8, 32 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 34 | 32 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℝ) |
| 35 | 8, 34 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 36 | | 7re 12338 |
. . . . . . . . . . . . . . 15
⊢ 7 ∈
ℝ |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 7 ∈
ℝ) |
| 38 | | 7pos 12356 |
. . . . . . . . . . . . . . 15
⊢ 0 <
7 |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 7) |
| 40 | 13, 20 | 3lexlogpow5ineq3 42075 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 7 < ((2 logb
𝑁)↑5)) |
| 41 | 14, 37, 30, 39, 40 | lttrd 11401 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < ((2 logb
𝑁)↑5)) |
| 42 | | ceilge 13867 |
. . . . . . . . . . . . . 14
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2
logb 𝑁)↑5))) |
| 43 | 30, 42 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤
(⌈‘((2 logb 𝑁)↑5))) |
| 44 | 14, 30, 34, 41, 43 | ltletrd 11400 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < (⌈‘((2
logb 𝑁)↑5))) |
| 45 | 44, 8 | breqtrrd 5152 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 𝐵) |
| 46 | 14, 35, 45 | ltled 11388 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝐵) |
| 47 | 33, 46 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵)) |
| 48 | | elnn0z 12606 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℤ
∧ 0 ≤ 𝐵)) |
| 49 | 47, 48 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
| 50 | 7, 49 | reexpcld 14186 |
. . . . . . 7
⊢ (𝜑 → (2↑𝐵) ∈ ℝ) |
| 51 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (2↑𝐵) ∈ ℝ) |
| 52 | | elfznn 13575 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℕ) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℕ) |
| 54 | 53 | nnzd 12620 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℤ) |
| 55 | 54 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℤ)) |
| 56 | 55 | ssrdv 3969 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝐵) ⊆ ℤ) |
| 57 | | fzfid 13996 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝐵) ∈ Fin) |
| 58 | | lcmfcl 16652 |
. . . . . . . . 9
⊢
(((1...𝐵) ⊆
ℤ ∧ (1...𝐵)
∈ Fin) → (lcm‘(1...𝐵)) ∈
ℕ0) |
| 59 | 56, 57, 58 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
(lcm‘(1...𝐵))
∈ ℕ0) |
| 60 | 59 | nn0red 12568 |
. . . . . . 7
⊢ (𝜑 →
(lcm‘(1...𝐵))
∈ ℝ) |
| 61 | 60 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (lcm‘(1...𝐵)) ∈
ℝ) |
| 62 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1))) |
| 63 | | elnnz 12603 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
| 64 | 12, 21, 63 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 65 | 7, 10, 35, 45, 26 | relogbcld 41991 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (2 logb 𝐵) ∈
ℝ) |
| 66 | 65 | flcld 13820 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℤ) |
| 67 | 7, 10, 7, 10, 26 | relogbcld 41991 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 2)
∈ ℝ) |
| 68 | | 0le1 11765 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
1 |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 1) |
| 70 | 7 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ∈
ℂ) |
| 71 | 14, 10 | gtned 11375 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ≠ 0) |
| 72 | | logbid1 26735 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) =
1) |
| 73 | 70, 71, 26, 72 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 logb 2) =
1) |
| 74 | 73 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 = (2 logb
2)) |
| 75 | 69, 74 | breqtrd 5150 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ (2 logb
2)) |
| 76 | | 2z 12629 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℤ |
| 77 | 76 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ∈
ℤ) |
| 78 | 7 | leidd 11808 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≤ 2) |
| 79 | | 2lt7 12435 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
7 |
| 80 | 79 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 < 7) |
| 81 | 7, 37, 80 | ltled 11388 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ≤ 7) |
| 82 | 37, 30, 34, 40, 43 | ltletrd 11400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 7 < (⌈‘((2
logb 𝑁)↑5))) |
| 83 | 82, 8 | breqtrrd 5152 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 7 < 𝐵) |
| 84 | 37, 35, 83 | ltled 11388 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 7 ≤ 𝐵) |
| 85 | 7, 37, 35, 81, 84 | letrd 11397 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≤ 𝐵) |
| 86 | 77, 78, 7, 10, 35, 45, 85 | logblebd 41994 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 2) ≤
(2 logb 𝐵)) |
| 87 | 14, 67, 65, 75, 86 | letrd 11397 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (2 logb
𝐵)) |
| 88 | | 0zd 12605 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℤ) |
| 89 | | flge 13827 |
. . . . . . . . . . . . . . 15
⊢ (((2
logb 𝐵) ∈
ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤
(⌊‘(2 logb 𝐵)))) |
| 90 | 65, 88, 89 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 ≤ (2 logb
𝐵) ↔ 0 ≤
(⌊‘(2 logb 𝐵)))) |
| 91 | 87, 90 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ (⌊‘(2
logb 𝐵))) |
| 92 | 66, 91 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((⌊‘(2
logb 𝐵)) ∈
ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵)))) |
| 93 | | elnn0z 12606 |
. . . . . . . . . . . 12
⊢
((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔
((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤
(⌊‘(2 logb 𝐵)))) |
| 94 | 92, 93 | sylibr 234 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℕ0) |
| 95 | 64, 94 | nnexpcld 14268 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁↑(⌊‘(2 logb
𝐵))) ∈
ℕ) |
| 96 | | fzfid 13996 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...(⌊‘((2
logb 𝑁)↑2))) ∈ Fin) |
| 97 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑁 ∈ ℤ) |
| 98 | | elfznn 13575 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2))) → 𝑘 ∈ ℕ) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ) |
| 100 | 99 | nnnn0d 12567 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0) |
| 101 | | zexpcl 14099 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝑁↑𝑘) ∈
ℤ) |
| 102 | 97, 100, 101 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑𝑘) ∈ ℤ) |
| 103 | | 1zzd 12628 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ∈
ℤ) |
| 104 | 102, 103 | zsubcld 12707 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → ((𝑁↑𝑘) − 1) ∈ ℤ) |
| 105 | | 1cnd 11235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ∈
ℂ) |
| 106 | 105 | addridd 11440 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (1 + 0) =
1) |
| 107 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ∈
ℝ) |
| 108 | | 1nn0 12522 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ0 |
| 109 | 108 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℕ0) |
| 110 | 13, 109 | reexpcld 14186 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑁↑1) ∈ ℝ) |
| 111 | 110 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑1) ∈ ℝ) |
| 112 | 102 | zred 12702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑𝑘) ∈ ℝ) |
| 113 | | 1lt3 12418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
3 |
| 114 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 < 3) |
| 115 | 22, 16, 13, 114, 20 | ltletrd 11400 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 < 𝑁) |
| 116 | 13 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 117 | 116 | exp1d 14164 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁↑1) = 𝑁) |
| 118 | 117 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 = (𝑁↑1)) |
| 119 | 115, 118 | breqtrd 5150 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 < (𝑁↑1)) |
| 120 | 119 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 < (𝑁↑1)) |
| 121 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑁 ∈ ℝ) |
| 122 | 64 | nnge1d 12293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ≤ 𝑁) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ≤ 𝑁) |
| 124 | | elfzuz 13542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2))) → 𝑘 ∈
(ℤ≥‘1)) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈
(ℤ≥‘1)) |
| 126 | 121, 123,
125 | leexp2ad 14277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑1) ≤ (𝑁↑𝑘)) |
| 127 | 107, 111,
112, 120, 126 | ltletrd 11400 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 < (𝑁↑𝑘)) |
| 128 | 106, 127 | eqbrtrd 5146 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (1 + 0) < (𝑁↑𝑘)) |
| 129 | 14 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 0 ∈
ℝ) |
| 130 | 107, 129,
112 | ltaddsub2d 11843 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → ((1 + 0) < (𝑁↑𝑘) ↔ 0 < ((𝑁↑𝑘) − 1))) |
| 131 | 128, 130 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 0 < ((𝑁↑𝑘) − 1)) |
| 132 | 104, 131 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (((𝑁↑𝑘) − 1) ∈ ℤ ∧ 0 <
((𝑁↑𝑘) − 1))) |
| 133 | | elnnz 12603 |
. . . . . . . . . . . 12
⊢ (((𝑁↑𝑘) − 1) ∈ ℕ ↔ (((𝑁↑𝑘) − 1) ∈ ℤ ∧ 0 <
((𝑁↑𝑘) − 1))) |
| 134 | 132, 133 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → ((𝑁↑𝑘) − 1) ∈ ℕ) |
| 135 | 96, 134 | fprodnncl 15976 |
. . . . . . . . . 10
⊢ (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1) ∈ ℕ) |
| 136 | 95, 135 | nnmulcld 12298 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) ∈
ℕ) |
| 137 | 62, 136 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℕ) |
| 138 | 137 | nnred 12260 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 139 | 138 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → 𝐴 ∈ ℝ) |
| 140 | 1, 2, 3 | aks4d1p2 42095 |
. . . . . . 7
⊢ (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵))) |
| 141 | 140 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (2↑𝐵) ≤ (lcm‘(1...𝐵))) |
| 142 | 137 | nnzd 12620 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 143 | 142 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → 𝐴 ∈ ℤ) |
| 144 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (1...𝐵) ⊆ ℤ) |
| 145 | | fzfid 13996 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (1...𝐵) ∈ Fin) |
| 146 | | lcmfdvdsb 16667 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ (1...𝐵) ⊆ ℤ ∧
(1...𝐵) ∈ Fin) →
(∀𝑟 ∈
(1...𝐵)𝑟 ∥ 𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴)) |
| 147 | 143, 144,
145, 146 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴)) |
| 148 | 147 | biimpd 229 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴 → (lcm‘(1...𝐵)) ∥ 𝐴)) |
| 149 | 148 | syldbl2 841 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (lcm‘(1...𝐵)) ∥ 𝐴) |
| 150 | 59 | nn0zd 12619 |
. . . . . . . . 9
⊢ (𝜑 →
(lcm‘(1...𝐵))
∈ ℤ) |
| 151 | 150 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (lcm‘(1...𝐵)) ∈
ℤ) |
| 152 | 137 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → 𝐴 ∈ ℕ) |
| 153 | | dvdsle 16334 |
. . . . . . . 8
⊢
(((lcm‘(1...𝐵)) ∈ ℤ ∧ 𝐴 ∈ ℕ) →
((lcm‘(1...𝐵))
∥ 𝐴 →
(lcm‘(1...𝐵))
≤ 𝐴)) |
| 154 | 151, 152,
153 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴)) |
| 155 | 149, 154 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (lcm‘(1...𝐵)) ≤ 𝐴) |
| 156 | 51, 61, 139, 141, 155 | letrd 11397 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → (2↑𝐵) ≤ 𝐴) |
| 157 | 51, 139 | lenltd 11386 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → ((2↑𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (2↑𝐵))) |
| 158 | 156, 157 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → ¬ 𝐴 < (2↑𝐵)) |
| 159 | 5, 158 | pm2.21dd 195 |
. . 3
⊢ ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) |
| 160 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ ¬ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) |
| 161 | 159, 160 | pm2.61dan 812 |
. 2
⊢ (𝜑 → ¬ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) |
| 162 | | rexnal 3090 |
. 2
⊢
(∃𝑟 ∈
(1...𝐵) ¬ 𝑟 ∥ 𝐴 ↔ ¬ ∀𝑟 ∈ (1...𝐵)𝑟 ∥ 𝐴) |
| 163 | 161, 162 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |