Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p3 40086
Description: There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p3.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p3.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p3.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p3 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑁(𝑟)

Proof of Theorem aks4d1p3
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p3.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
2 aks4d1p3.2 . . . . . 6 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p3.3 . . . . . 6 𝐵 = (⌈‘((2 logb 𝑁)↑5))
41, 2, 3aks4d1p1 40084 . . . . 5 (𝜑𝐴 < (2↑𝐵))
54adantr 481 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 < (2↑𝐵))
6 2re 12047 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
83a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
9 2pos 12076 . . . . . . . . . . . . . . 15 0 < 2
109a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
11 eluzelz 12592 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
121, 11syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
1312zred 12426 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
14 0red 10978 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
15 3re 12053 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
17 3pos 12078 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12595 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2114, 16, 13, 18, 20ltletrd 11135 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
22 1red 10976 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23 1lt2 12144 . . . . . . . . . . . . . . . . 17 1 < 2
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2522, 24ltned 11111 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2625necomd 2999 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
277, 10, 13, 21, 26relogbcld 39981 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
28 5nn0 12253 . . . . . . . . . . . . . 14 5 ∈ ℕ0
2928a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
3027, 29reexpcld 13881 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
31 ceilcl 13562 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
338, 32eqeltrd 2839 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
3432zred 12426 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
358, 34eqeltrd 2839 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
36 7re 12066 . . . . . . . . . . . . . . 15 7 ∈ ℝ
3736a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 7 ∈ ℝ)
38 7pos 12084 . . . . . . . . . . . . . . 15 0 < 7
3938a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 7)
4013, 203lexlogpow5ineq3 40065 . . . . . . . . . . . . . 14 (𝜑 → 7 < ((2 logb 𝑁)↑5))
4114, 37, 30, 39, 40lttrd 11136 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 𝑁)↑5))
42 ceilge 13565 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4330, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4414, 30, 34, 41, 43ltletrd 11135 . . . . . . . . . . . 12 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
4544, 8breqtrrd 5102 . . . . . . . . . . 11 (𝜑 → 0 < 𝐵)
4614, 35, 45ltled 11123 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐵)
4733, 46jca 512 . . . . . . . . 9 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
48 elnn0z 12332 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
4947, 48sylibr 233 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
507, 49reexpcld 13881 . . . . . . 7 (𝜑 → (2↑𝐵) ∈ ℝ)
5150adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ∈ ℝ)
52 elfznn 13285 . . . . . . . . . . . . 13 (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℕ)
5352adantl 482 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℕ)
5453nnzd 12425 . . . . . . . . . . 11 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℤ)
5554ex 413 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℤ))
5655ssrdv 3927 . . . . . . . . 9 (𝜑 → (1...𝐵) ⊆ ℤ)
57 fzfid 13693 . . . . . . . . 9 (𝜑 → (1...𝐵) ∈ Fin)
58 lcmfcl 16333 . . . . . . . . 9 (((1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (lcm‘(1...𝐵)) ∈ ℕ0)
5956, 57, 58syl2anc 584 . . . . . . . 8 (𝜑 → (lcm‘(1...𝐵)) ∈ ℕ0)
6059nn0red 12294 . . . . . . 7 (𝜑 → (lcm‘(1...𝐵)) ∈ ℝ)
6160adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℝ)
622a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
63 elnnz 12329 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6412, 21, 63sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
657, 10, 35, 45, 26relogbcld 39981 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 𝐵) ∈ ℝ)
6665flcld 13518 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
677, 10, 7, 10, 26relogbcld 39981 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ∈ ℝ)
68 0le1 11498 . . . . . . . . . . . . . . . . 17 0 ≤ 1
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
707recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
7114, 10gtned 11110 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
72 logbid1 25918 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
7370, 71, 26, 72syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
7473eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (2 logb 2))
7569, 74breqtrd 5100 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 2))
76 2z 12352 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
7776a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
787leidd 11541 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
79 2lt7 12163 . . . . . . . . . . . . . . . . . . 19 2 < 7
8079a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 7)
817, 37, 80ltled 11123 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 7)
8237, 30, 34, 40, 43ltletrd 11135 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
8382, 8breqtrrd 5102 . . . . . . . . . . . . . . . . . 18 (𝜑 → 7 < 𝐵)
8437, 35, 83ltled 11123 . . . . . . . . . . . . . . . . 17 (𝜑 → 7 ≤ 𝐵)
857, 37, 35, 81, 84letrd 11132 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝐵)
8677, 78, 7, 10, 35, 45, 85logblebd 39984 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
8714, 67, 65, 75, 86letrd 11132 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 𝐵))
88 0zd 12331 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℤ)
89 flge 13525 . . . . . . . . . . . . . . 15 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9065, 88, 89syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9187, 90mpbid 231 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
9266, 91jca 512 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
93 elnn0z 12332 . . . . . . . . . . . 12 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
9492, 93sylibr 233 . . . . . . . . . . 11 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9564, 94nnexpcld 13960 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
96 fzfid 13693 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9712adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
98 elfznn 13285 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9998adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12293 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
101 zexpcl 13797 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
103 1zzd 12351 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
104102, 103zsubcld 12431 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
105 1cnd 10970 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℂ)
106105addid1d 11175 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) = 1)
10722adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
108 1nn0 12249 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
109108a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
11013, 109reexpcld 13881 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁↑1) ∈ ℝ)
111110adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ∈ ℝ)
112102zred 12426 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
113 1lt3 12146 . . . . . . . . . . . . . . . . . . . 20 1 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 3)
11522, 16, 13, 114, 20ltletrd 11135 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 𝑁)
11613recnd 11003 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
117116exp1d 13859 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁↑1) = 𝑁)
118117eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 = (𝑁↑1))
119115, 118breqtrd 5100 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 < (𝑁↑1))
120119adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁↑1))
12113adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
12264nnge1d 12021 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝑁)
123122adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ 𝑁)
124 elfzuz 13252 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ (ℤ‘1))
125124adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (ℤ‘1))
126121, 123, 125leexp2ad 13971 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ≤ (𝑁𝑘))
127107, 111, 112, 120, 126ltletrd 11135 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁𝑘))
128106, 127eqbrtrd 5096 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) < (𝑁𝑘))
12914adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 ∈ ℝ)
130107, 129, 112ltaddsub2d 11576 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((1 + 0) < (𝑁𝑘) ↔ 0 < ((𝑁𝑘) − 1)))
131128, 130mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 < ((𝑁𝑘) − 1))
132104, 131jca 512 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
133 elnnz 12329 . . . . . . . . . . . 12 (((𝑁𝑘) − 1) ∈ ℕ ↔ (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
134132, 133sylibr 233 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℕ)
13596, 134fprodnncl 15665 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℕ)
13695, 135nnmulcld 12026 . . . . . . . . 9 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℕ)
13762, 136eqeltrd 2839 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
138137nnred 11988 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
139138adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℝ)
1401, 2, 3aks4d1p2 40085 . . . . . . 7 (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
141140adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
142137nnzd 12425 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
143142adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℤ)
14456adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ⊆ ℤ)
145 fzfid 13693 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ∈ Fin)
146 lcmfdvdsb 16348 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
147143, 144, 145, 146syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
148147biimpd 228 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 → (lcm‘(1...𝐵)) ∥ 𝐴))
149148syldbl2 838 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∥ 𝐴)
15059nn0zd 12424 . . . . . . . . 9 (𝜑 → (lcm‘(1...𝐵)) ∈ ℤ)
151150adantr 481 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℤ)
152137adantr 481 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℕ)
153 dvdsle 16019 . . . . . . . 8 (((lcm‘(1...𝐵)) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
154151, 152, 153syl2anc 584 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
155149, 154mpd 15 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ≤ 𝐴)
15651, 61, 139, 141, 155letrd 11132 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ 𝐴)
15751, 139lenltd 11121 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((2↑𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (2↑𝐵)))
158156, 157mpbid 231 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ 𝐴 < (2↑𝐵))
1595, 158pm2.21dd 194 . . 3 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
160 simpr 485 . . 3 ((𝜑 ∧ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
161159, 160pm2.61dan 810 . 2 (𝜑 → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
162 rexnal 3169 . 2 (∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴 ↔ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
163161, 162sylibr 233 1 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  3c3 12029  5c5 12031  7c7 12033  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cfl 13510  cceil 13511  cexp 13782  cprod 15615  cdvds 15963  lcmclcmf 16294   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-lcm 16295  df-lcmf 16296  df-prm 16377  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  aks4d1p4  40087  aks4d1p5  40088  aks4d1p7  40091  aks4d1p8  40095
  Copyright terms: Public domain W3C validator