Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p3 Structured version   Visualization version   GIF version

Theorem aks4d1p3 42060
Description: There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 27-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p3.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p3.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p3.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p3 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑁(𝑟)

Proof of Theorem aks4d1p3
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p3.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
2 aks4d1p3.2 . . . . . 6 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p3.3 . . . . . 6 𝐵 = (⌈‘((2 logb 𝑁)↑5))
41, 2, 3aks4d1p1 42058 . . . . 5 (𝜑𝐴 < (2↑𝐵))
54adantr 480 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 < (2↑𝐵))
6 2re 12338 . . . . . . . . 9 2 ∈ ℝ
76a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
83a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
9 2pos 12367 . . . . . . . . . . . . . . 15 0 < 2
109a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
11 eluzelz 12886 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
121, 11syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
1312zred 12720 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
14 0red 11262 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
15 3re 12344 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
17 3pos 12369 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12889 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2114, 16, 13, 18, 20ltletrd 11419 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
22 1red 11260 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23 1lt2 12435 . . . . . . . . . . . . . . . . 17 1 < 2
2423a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
2522, 24ltned 11395 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
2625necomd 2994 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
277, 10, 13, 21, 26relogbcld 41955 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
28 5nn0 12544 . . . . . . . . . . . . . 14 5 ∈ ℕ0
2928a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
3027, 29reexpcld 14200 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
31 ceilcl 13879 . . . . . . . . . . . 12 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
338, 32eqeltrd 2839 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
3432zred 12720 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
358, 34eqeltrd 2839 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
36 7re 12357 . . . . . . . . . . . . . . 15 7 ∈ ℝ
3736a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 7 ∈ ℝ)
38 7pos 12375 . . . . . . . . . . . . . . 15 0 < 7
3938a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 7)
4013, 203lexlogpow5ineq3 42039 . . . . . . . . . . . . . 14 (𝜑 → 7 < ((2 logb 𝑁)↑5))
4114, 37, 30, 39, 40lttrd 11420 . . . . . . . . . . . . 13 (𝜑 → 0 < ((2 logb 𝑁)↑5))
42 ceilge 13882 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4330, 42syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
4414, 30, 34, 41, 43ltletrd 11419 . . . . . . . . . . . 12 (𝜑 → 0 < (⌈‘((2 logb 𝑁)↑5)))
4544, 8breqtrrd 5176 . . . . . . . . . . 11 (𝜑 → 0 < 𝐵)
4614, 35, 45ltled 11407 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐵)
4733, 46jca 511 . . . . . . . . 9 (𝜑 → (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
48 elnn0z 12624 . . . . . . . . 9 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℤ ∧ 0 ≤ 𝐵))
4947, 48sylibr 234 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
507, 49reexpcld 14200 . . . . . . 7 (𝜑 → (2↑𝐵) ∈ ℝ)
5150adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ∈ ℝ)
52 elfznn 13590 . . . . . . . . . . . . 13 (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℕ)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℕ)
5453nnzd 12638 . . . . . . . . . . 11 ((𝜑𝑞 ∈ (1...𝐵)) → 𝑞 ∈ ℤ)
5554ex 412 . . . . . . . . . 10 (𝜑 → (𝑞 ∈ (1...𝐵) → 𝑞 ∈ ℤ))
5655ssrdv 4001 . . . . . . . . 9 (𝜑 → (1...𝐵) ⊆ ℤ)
57 fzfid 14011 . . . . . . . . 9 (𝜑 → (1...𝐵) ∈ Fin)
58 lcmfcl 16662 . . . . . . . . 9 (((1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (lcm‘(1...𝐵)) ∈ ℕ0)
5956, 57, 58syl2anc 584 . . . . . . . 8 (𝜑 → (lcm‘(1...𝐵)) ∈ ℕ0)
6059nn0red 12586 . . . . . . 7 (𝜑 → (lcm‘(1...𝐵)) ∈ ℝ)
6160adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℝ)
622a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
63 elnnz 12621 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
6412, 21, 63sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
657, 10, 35, 45, 26relogbcld 41955 . . . . . . . . . . . . . 14 (𝜑 → (2 logb 𝐵) ∈ ℝ)
6665flcld 13835 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
677, 10, 7, 10, 26relogbcld 41955 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ∈ ℝ)
68 0le1 11784 . . . . . . . . . . . . . . . . 17 0 ≤ 1
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 1)
707recnd 11287 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
7114, 10gtned 11394 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
72 logbid1 26826 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
7370, 71, 26, 72syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 2) = 1)
7473eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → 1 = (2 logb 2))
7569, 74breqtrd 5174 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 2))
76 2z 12647 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
7776a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℤ)
787leidd 11827 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 2)
79 2lt7 12454 . . . . . . . . . . . . . . . . . . 19 2 < 7
8079a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 < 7)
817, 37, 80ltled 11407 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 7)
8237, 30, 34, 40, 43ltletrd 11419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 7 < (⌈‘((2 logb 𝑁)↑5)))
8382, 8breqtrrd 5176 . . . . . . . . . . . . . . . . . 18 (𝜑 → 7 < 𝐵)
8437, 35, 83ltled 11407 . . . . . . . . . . . . . . . . 17 (𝜑 → 7 ≤ 𝐵)
857, 37, 35, 81, 84letrd 11416 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≤ 𝐵)
8677, 78, 7, 10, 35, 45, 85logblebd 41958 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 2) ≤ (2 logb 𝐵))
8714, 67, 65, 75, 86letrd 11416 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (2 logb 𝐵))
88 0zd 12623 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℤ)
89 flge 13842 . . . . . . . . . . . . . . 15 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9065, 88, 89syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9187, 90mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
9266, 91jca 511 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
93 elnn0z 12624 . . . . . . . . . . . 12 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
9492, 93sylibr 234 . . . . . . . . . . 11 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9564, 94nnexpcld 14281 . . . . . . . . . 10 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℕ)
96 fzfid 14011 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
98 elfznn 13590 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
9998adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12585 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
101 zexpcl 14114 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
103 1zzd 12646 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
104102, 103zsubcld 12725 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
105 1cnd 11254 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℂ)
106105addridd 11459 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) = 1)
10722adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℝ)
108 1nn0 12540 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
109108a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
11013, 109reexpcld 14200 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁↑1) ∈ ℝ)
111110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ∈ ℝ)
112102zred 12720 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℝ)
113 1lt3 12437 . . . . . . . . . . . . . . . . . . . 20 1 < 3
114113a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 3)
11522, 16, 13, 114, 20ltletrd 11419 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 𝑁)
11613recnd 11287 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
117116exp1d 14178 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁↑1) = 𝑁)
118117eqcomd 2741 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 = (𝑁↑1))
119115, 118breqtrd 5174 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 < (𝑁↑1))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁↑1))
12113adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℝ)
12264nnge1d 12312 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 𝑁)
123122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ≤ 𝑁)
124 elfzuz 13557 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ (ℤ‘1))
125124adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (ℤ‘1))
126121, 123, 125leexp2ad 14290 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁↑1) ≤ (𝑁𝑘))
127107, 111, 112, 120, 126ltletrd 11419 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 < (𝑁𝑘))
128106, 127eqbrtrd 5170 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (1 + 0) < (𝑁𝑘))
12914adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 ∈ ℝ)
130107, 129, 112ltaddsub2d 11862 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((1 + 0) < (𝑁𝑘) ↔ 0 < ((𝑁𝑘) − 1)))
131128, 130mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 0 < ((𝑁𝑘) − 1))
132104, 131jca 511 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
133 elnnz 12621 . . . . . . . . . . . 12 (((𝑁𝑘) − 1) ∈ ℕ ↔ (((𝑁𝑘) − 1) ∈ ℤ ∧ 0 < ((𝑁𝑘) − 1)))
134132, 133sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℕ)
13596, 134fprodnncl 15988 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℕ)
13695, 135nnmulcld 12317 . . . . . . . . 9 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℕ)
13762, 136eqeltrd 2839 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
138137nnred 12279 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
139138adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℝ)
1401, 2, 3aks4d1p2 42059 . . . . . . 7 (𝜑 → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
141140adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ (lcm‘(1...𝐵)))
142137nnzd 12638 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
143142adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℤ)
14456adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ⊆ ℤ)
145 fzfid 14011 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (1...𝐵) ∈ Fin)
146 lcmfdvdsb 16677 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (1...𝐵) ⊆ ℤ ∧ (1...𝐵) ∈ Fin) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
147143, 144, 145, 146syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 ↔ (lcm‘(1...𝐵)) ∥ 𝐴))
148147biimpd 229 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (∀𝑟 ∈ (1...𝐵)𝑟𝐴 → (lcm‘(1...𝐵)) ∥ 𝐴))
149148syldbl2 841 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∥ 𝐴)
15059nn0zd 12637 . . . . . . . . 9 (𝜑 → (lcm‘(1...𝐵)) ∈ ℤ)
151150adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ∈ ℤ)
152137adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → 𝐴 ∈ ℕ)
153 dvdsle 16344 . . . . . . . 8 (((lcm‘(1...𝐵)) ∈ ℤ ∧ 𝐴 ∈ ℕ) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
154151, 152, 153syl2anc 584 . . . . . . 7 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((lcm‘(1...𝐵)) ∥ 𝐴 → (lcm‘(1...𝐵)) ≤ 𝐴))
155149, 154mpd 15 . . . . . 6 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (lcm‘(1...𝐵)) ≤ 𝐴)
15651, 61, 139, 141, 155letrd 11416 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → (2↑𝐵) ≤ 𝐴)
15751, 139lenltd 11405 . . . . 5 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ((2↑𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (2↑𝐵)))
158156, 157mpbid 232 . . . 4 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ 𝐴 < (2↑𝐵))
1595, 158pm2.21dd 195 . . 3 ((𝜑 ∧ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
160 simpr 484 . . 3 ((𝜑 ∧ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴) → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
161159, 160pm2.61dan 813 . 2 (𝜑 → ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
162 rexnal 3098 . 2 (∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴 ↔ ¬ ∀𝑟 ∈ (1...𝐵)𝑟𝐴)
163161, 162sylibr 234 1 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  3c3 12320  5c5 12322  7c7 12324  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  cfl 13827  cceil 13828  cexp 14099  cprod 15936  cdvds 16287  lcmclcmf 16623   logb clogb 26822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-ceil 13830  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-lcm 16624  df-lcmf 16625  df-prm 16706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-logb 26823
This theorem is referenced by:  aks4d1p4  42061  aks4d1p5  42062  aks4d1p7  42065  aks4d1p8  42069
  Copyright terms: Public domain W3C validator