|   | Mathbox for metakunt | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootlekpowne0 | Structured version Visualization version GIF version | ||
| Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.) | 
| Ref | Expression | 
|---|---|
| primrootlekpowne0.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) | 
| primrootlekpowne0.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) | 
| primrootlekpowne0.3 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | 
| primrootlekpowne0.4 | ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) | 
| Ref | Expression | 
|---|---|
| primrootlekpowne0 | ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 7439 | . . . . . . 7 ⊢ (𝑙 = 𝑁 → (𝑙(.g‘𝑅)𝑀) = (𝑁(.g‘𝑅)𝑀)) | |
| 2 | 1 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑙 = 𝑁 → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅))) | 
| 3 | breq2 5146 | . . . . . 6 ⊢ (𝑙 = 𝑁 → (𝐾 ∥ 𝑙 ↔ 𝐾 ∥ 𝑁)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑙 = 𝑁 → (((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁))) | 
| 5 | primrootlekpowne0.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
| 6 | primrootlekpowne0.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 7 | primrootlekpowne0.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 8 | 7 | nnnn0d 12589 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | 
| 9 | eqid 2736 | . . . . . . . . . 10 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 10 | 6, 8, 9 | isprimroot 42095 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) | 
| 11 | 10 | biimpd 229 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) | 
| 12 | 5, 11 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) | 
| 13 | 12 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) | 
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) | 
| 15 | primrootlekpowne0.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) | |
| 16 | elfznn 13594 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 18 | 17 | nnnn0d 12589 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝑁 ∈ ℕ0) | 
| 20 | 4, 14, 19 | rspcdva 3622 | . . . 4 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁)) | 
| 21 | 20 | syldbl2 841 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑁) | 
| 22 | 17 | nnred 12282 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 23 | 7 | nnred 12282 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) | 
| 24 | 1red 11263 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 25 | 23, 24 | resubcld 11692 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) ∈ ℝ) | 
| 26 | elfzle2 13569 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1)) | |
| 27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≤ (𝐾 − 1)) | 
| 28 | 23 | ltm1d 12201 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) < 𝐾) | 
| 29 | 22, 25, 23, 27, 28 | lelttrd 11420 | . . . . . 6 ⊢ (𝜑 → 𝑁 < 𝐾) | 
| 30 | 22, 23 | ltnled 11409 | . . . . . 6 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) | 
| 31 | 29, 30 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ¬ 𝐾 ≤ 𝑁) | 
| 32 | 8 | nn0zd 12641 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) | 
| 33 | dvdsle 16348 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) | |
| 34 | 32, 17, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) | 
| 35 | 34 | con3d 152 | . . . . 5 ⊢ (𝜑 → (¬ 𝐾 ≤ 𝑁 → ¬ 𝐾 ∥ 𝑁)) | 
| 36 | 31, 35 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑁) | 
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ¬ 𝐾 ∥ 𝑁) | 
| 38 | 21, 37 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | 
| 39 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | |
| 40 | 38, 39 | pm2.61dane 3028 | 1 ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 1c1 11157 < clt 11296 ≤ cle 11297 − cmin 11493 ℕcn 12267 ℕ0cn0 12528 ℤcz 12615 ...cfz 13548 ∥ cdvds 16291 Basecbs 17248 0gc0g 17485 .gcmg 19086 CMndccmn 19799 PrimRoots cprimroots 42093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-dvds 16292 df-primroots 42094 | 
| This theorem is referenced by: primrootspoweq0 42108 | 
| Copyright terms: Public domain | W3C validator |