Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primrootlekpowne0 Structured version   Visualization version   GIF version

Theorem primrootlekpowne0 42123
Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
primrootlekpowne0.1 (𝜑𝑅 ∈ CMnd)
primrootlekpowne0.2 (𝜑𝐾 ∈ ℕ)
primrootlekpowne0.3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
primrootlekpowne0.4 (𝜑𝑁 ∈ (1...(𝐾 − 1)))
Assertion
Ref Expression
primrootlekpowne0 (𝜑 → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))

Proof of Theorem primrootlekpowne0
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . . . 7 (𝑙 = 𝑁 → (𝑙(.g𝑅)𝑀) = (𝑁(.g𝑅)𝑀))
21eqeq1d 2738 . . . . . 6 (𝑙 = 𝑁 → ((𝑙(.g𝑅)𝑀) = (0g𝑅) ↔ (𝑁(.g𝑅)𝑀) = (0g𝑅)))
3 breq2 5128 . . . . . 6 (𝑙 = 𝑁 → (𝐾𝑙𝐾𝑁))
42, 3imbi12d 344 . . . . 5 (𝑙 = 𝑁 → (((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑁(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑁)))
5 primrootlekpowne0.3 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
6 primrootlekpowne0.1 . . . . . . . . . 10 (𝜑𝑅 ∈ CMnd)
7 primrootlekpowne0.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
87nnnn0d 12567 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
9 eqid 2736 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
106, 8, 9isprimroot 42111 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
1110biimpd 229 . . . . . . . 8 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
125, 11mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
1312simp3d 1144 . . . . . 6 (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))
15 primrootlekpowne0.4 . . . . . . . 8 (𝜑𝑁 ∈ (1...(𝐾 − 1)))
16 elfznn 13575 . . . . . . . 8 (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ)
1715, 16syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1817nnnn0d 12567 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → 𝑁 ∈ ℕ0)
204, 14, 19rspcdva 3607 . . . 4 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ((𝑁(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑁))
2120syldbl2 841 . . 3 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → 𝐾𝑁)
2217nnred 12260 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
237nnred 12260 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
24 1red 11241 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2523, 24resubcld 11670 . . . . . . 7 (𝜑 → (𝐾 − 1) ∈ ℝ)
26 elfzle2 13550 . . . . . . . 8 (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1))
2715, 26syl 17 . . . . . . 7 (𝜑𝑁 ≤ (𝐾 − 1))
2823ltm1d 12179 . . . . . . 7 (𝜑 → (𝐾 − 1) < 𝐾)
2922, 25, 23, 27, 28lelttrd 11398 . . . . . 6 (𝜑𝑁 < 𝐾)
3022, 23ltnled 11387 . . . . . 6 (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
3129, 30mpbid 232 . . . . 5 (𝜑 → ¬ 𝐾𝑁)
328nn0zd 12619 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
33 dvdsle 16334 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑁𝐾𝑁))
3432, 17, 33syl2anc 584 . . . . . 6 (𝜑 → (𝐾𝑁𝐾𝑁))
3534con3d 152 . . . . 5 (𝜑 → (¬ 𝐾𝑁 → ¬ 𝐾𝑁))
3631, 35mpd 15 . . . 4 (𝜑 → ¬ 𝐾𝑁)
3736adantr 480 . . 3 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ¬ 𝐾𝑁)
3821, 37pm2.21dd 195 . 2 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
39 simpr 484 . 2 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) ≠ (0g𝑅)) → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
4038, 39pm2.61dane 3020 1 (𝜑 → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052   class class class wbr 5124  cfv 6536  (class class class)co 7410  1c1 11135   < clt 11274  cle 11275  cmin 11471  cn 12245  0cn0 12506  cz 12593  ...cfz 13529  cdvds 16277  Basecbs 17233  0gc0g 17458  .gcmg 19055  CMndccmn 19766   PrimRoots cprimroots 42109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-dvds 16278  df-primroots 42110
This theorem is referenced by:  primrootspoweq0  42124
  Copyright terms: Public domain W3C validator