| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootlekpowne0 | Structured version Visualization version GIF version | ||
| Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.) |
| Ref | Expression |
|---|---|
| primrootlekpowne0.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| primrootlekpowne0.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| primrootlekpowne0.3 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| primrootlekpowne0.4 | ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) |
| Ref | Expression |
|---|---|
| primrootlekpowne0 | ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . . . . 7 ⊢ (𝑙 = 𝑁 → (𝑙(.g‘𝑅)𝑀) = (𝑁(.g‘𝑅)𝑀)) | |
| 2 | 1 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑙 = 𝑁 → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 3 | breq2 5099 | . . . . . 6 ⊢ (𝑙 = 𝑁 → (𝐾 ∥ 𝑙 ↔ 𝐾 ∥ 𝑁)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑙 = 𝑁 → (((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁))) |
| 5 | primrootlekpowne0.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
| 6 | primrootlekpowne0.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 7 | primrootlekpowne0.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 8 | 7 | nnnn0d 12453 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 9 | eqid 2733 | . . . . . . . . . 10 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 10 | 6, 8, 9 | isprimroot 42259 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 11 | 10 | biimpd 229 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 12 | 5, 11 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 13 | 12 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 15 | primrootlekpowne0.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) | |
| 16 | elfznn 13460 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 18 | 17 | nnnn0d 12453 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝑁 ∈ ℕ0) |
| 20 | 4, 14, 19 | rspcdva 3574 | . . . 4 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁)) |
| 21 | 20 | syldbl2 841 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑁) |
| 22 | 17 | nnred 12151 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 23 | 7 | nnred 12151 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 24 | 1red 11124 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 25 | 23, 24 | resubcld 11556 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) ∈ ℝ) |
| 26 | elfzle2 13435 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1)) | |
| 27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≤ (𝐾 − 1)) |
| 28 | 23 | ltm1d 12065 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) < 𝐾) |
| 29 | 22, 25, 23, 27, 28 | lelttrd 11282 | . . . . . 6 ⊢ (𝜑 → 𝑁 < 𝐾) |
| 30 | 22, 23 | ltnled 11271 | . . . . . 6 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
| 31 | 29, 30 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ¬ 𝐾 ≤ 𝑁) |
| 32 | 8 | nn0zd 12504 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 33 | dvdsle 16228 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) | |
| 34 | 32, 17, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) |
| 35 | 34 | con3d 152 | . . . . 5 ⊢ (𝜑 → (¬ 𝐾 ≤ 𝑁 → ¬ 𝐾 ∥ 𝑁)) |
| 36 | 31, 35 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑁) |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ¬ 𝐾 ∥ 𝑁) |
| 38 | 21, 37 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| 39 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | |
| 40 | 38, 39 | pm2.61dane 3016 | 1 ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 1c1 11018 < clt 11157 ≤ cle 11158 − cmin 11355 ℕcn 12136 ℕ0cn0 12392 ℤcz 12479 ...cfz 13414 ∥ cdvds 16170 Basecbs 17127 0gc0g 17350 .gcmg 18988 CMndccmn 19700 PrimRoots cprimroots 42257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-dvds 16171 df-primroots 42258 |
| This theorem is referenced by: primrootspoweq0 42272 |
| Copyright terms: Public domain | W3C validator |