Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primrootlekpowne0 Structured version   Visualization version   GIF version

Theorem primrootlekpowne0 42066
Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
primrootlekpowne0.1 (𝜑𝑅 ∈ CMnd)
primrootlekpowne0.2 (𝜑𝐾 ∈ ℕ)
primrootlekpowne0.3 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
primrootlekpowne0.4 (𝜑𝑁 ∈ (1...(𝐾 − 1)))
Assertion
Ref Expression
primrootlekpowne0 (𝜑 → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))

Proof of Theorem primrootlekpowne0
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . . . . 7 (𝑙 = 𝑁 → (𝑙(.g𝑅)𝑀) = (𝑁(.g𝑅)𝑀))
21eqeq1d 2731 . . . . . 6 (𝑙 = 𝑁 → ((𝑙(.g𝑅)𝑀) = (0g𝑅) ↔ (𝑁(.g𝑅)𝑀) = (0g𝑅)))
3 breq2 5106 . . . . . 6 (𝑙 = 𝑁 → (𝐾𝑙𝐾𝑁))
42, 3imbi12d 344 . . . . 5 (𝑙 = 𝑁 → (((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙) ↔ ((𝑁(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑁)))
5 primrootlekpowne0.3 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
6 primrootlekpowne0.1 . . . . . . . . . 10 (𝜑𝑅 ∈ CMnd)
7 primrootlekpowne0.2 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
87nnnn0d 12479 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
9 eqid 2729 . . . . . . . . . 10 (.g𝑅) = (.g𝑅)
106, 8, 9isprimroot 42054 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
1110biimpd 229 . . . . . . . 8 (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))))
125, 11mpd 15 . . . . . . 7 (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g𝑅)𝑀) = (0g𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙)))
1312simp3d 1144 . . . . . 6 (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑙))
15 primrootlekpowne0.4 . . . . . . . 8 (𝜑𝑁 ∈ (1...(𝐾 − 1)))
16 elfznn 13490 . . . . . . . 8 (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ)
1715, 16syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1817nnnn0d 12479 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → 𝑁 ∈ ℕ0)
204, 14, 19rspcdva 3586 . . . 4 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ((𝑁(.g𝑅)𝑀) = (0g𝑅) → 𝐾𝑁))
2120syldbl2 841 . . 3 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → 𝐾𝑁)
2217nnred 12177 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
237nnred 12177 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
24 1red 11151 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2523, 24resubcld 11582 . . . . . . 7 (𝜑 → (𝐾 − 1) ∈ ℝ)
26 elfzle2 13465 . . . . . . . 8 (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1))
2715, 26syl 17 . . . . . . 7 (𝜑𝑁 ≤ (𝐾 − 1))
2823ltm1d 12091 . . . . . . 7 (𝜑 → (𝐾 − 1) < 𝐾)
2922, 25, 23, 27, 28lelttrd 11308 . . . . . 6 (𝜑𝑁 < 𝐾)
3022, 23ltnled 11297 . . . . . 6 (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾𝑁))
3129, 30mpbid 232 . . . . 5 (𝜑 → ¬ 𝐾𝑁)
328nn0zd 12531 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
33 dvdsle 16256 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾𝑁𝐾𝑁))
3432, 17, 33syl2anc 584 . . . . . 6 (𝜑 → (𝐾𝑁𝐾𝑁))
3534con3d 152 . . . . 5 (𝜑 → (¬ 𝐾𝑁 → ¬ 𝐾𝑁))
3631, 35mpd 15 . . . 4 (𝜑 → ¬ 𝐾𝑁)
3736adantr 480 . . 3 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → ¬ 𝐾𝑁)
3821, 37pm2.21dd 195 . 2 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) = (0g𝑅)) → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
39 simpr 484 . 2 ((𝜑 ∧ (𝑁(.g𝑅)𝑀) ≠ (0g𝑅)) → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
4038, 39pm2.61dane 3012 1 (𝜑 → (𝑁(.g𝑅)𝑀) ≠ (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cdvds 16198  Basecbs 17155  0gc0g 17378  .gcmg 18975  CMndccmn 19686   PrimRoots cprimroots 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-dvds 16199  df-primroots 42053
This theorem is referenced by:  primrootspoweq0  42067
  Copyright terms: Public domain W3C validator