![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootlekpowne0 | Structured version Visualization version GIF version |
Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.) |
Ref | Expression |
---|---|
primrootlekpowne0.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
primrootlekpowne0.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
primrootlekpowne0.3 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
primrootlekpowne0.4 | ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) |
Ref | Expression |
---|---|
primrootlekpowne0 | ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . . . . 7 ⊢ (𝑙 = 𝑁 → (𝑙(.g‘𝑅)𝑀) = (𝑁(.g‘𝑅)𝑀)) | |
2 | 1 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑙 = 𝑁 → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅))) |
3 | breq2 5170 | . . . . . 6 ⊢ (𝑙 = 𝑁 → (𝐾 ∥ 𝑙 ↔ 𝐾 ∥ 𝑁)) | |
4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑙 = 𝑁 → (((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁))) |
5 | primrootlekpowne0.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
6 | primrootlekpowne0.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
7 | primrootlekpowne0.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
8 | 7 | nnnn0d 12613 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
9 | eqid 2740 | . . . . . . . . . 10 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
10 | 6, 8, 9 | isprimroot 42050 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
11 | 10 | biimpd 229 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
12 | 5, 11 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
13 | 12 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
15 | primrootlekpowne0.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) | |
16 | elfznn 13613 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
18 | 17 | nnnn0d 12613 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝑁 ∈ ℕ0) |
20 | 4, 14, 19 | rspcdva 3636 | . . . 4 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁)) |
21 | 20 | syldbl2 840 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑁) |
22 | 17 | nnred 12308 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
23 | 7 | nnred 12308 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
24 | 1red 11291 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
25 | 23, 24 | resubcld 11718 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) ∈ ℝ) |
26 | elfzle2 13588 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1)) | |
27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≤ (𝐾 − 1)) |
28 | 23 | ltm1d 12227 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) < 𝐾) |
29 | 22, 25, 23, 27, 28 | lelttrd 11448 | . . . . . 6 ⊢ (𝜑 → 𝑁 < 𝐾) |
30 | 22, 23 | ltnled 11437 | . . . . . 6 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
31 | 29, 30 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ¬ 𝐾 ≤ 𝑁) |
32 | 8 | nn0zd 12665 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
33 | dvdsle 16358 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) | |
34 | 32, 17, 33 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) |
35 | 34 | con3d 152 | . . . . 5 ⊢ (𝜑 → (¬ 𝐾 ≤ 𝑁 → ¬ 𝐾 ∥ 𝑁)) |
36 | 31, 35 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑁) |
37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ¬ 𝐾 ∥ 𝑁) |
38 | 21, 37 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
39 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | |
40 | 38, 39 | pm2.61dane 3035 | 1 ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 < clt 11324 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ∥ cdvds 16302 Basecbs 17258 0gc0g 17499 .gcmg 19107 CMndccmn 19822 PrimRoots cprimroots 42048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-dvds 16303 df-primroots 42049 |
This theorem is referenced by: primrootspoweq0 42063 |
Copyright terms: Public domain | W3C validator |