| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > primrootlekpowne0 | Structured version Visualization version GIF version | ||
| Description: There is no smaller power of a primitive root that sends it to the neutral element. (Contributed by metakunt, 15-May-2025.) |
| Ref | Expression |
|---|---|
| primrootlekpowne0.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| primrootlekpowne0.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| primrootlekpowne0.3 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| primrootlekpowne0.4 | ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) |
| Ref | Expression |
|---|---|
| primrootlekpowne0 | ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7417 | . . . . . . 7 ⊢ (𝑙 = 𝑁 → (𝑙(.g‘𝑅)𝑀) = (𝑁(.g‘𝑅)𝑀)) | |
| 2 | 1 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑙 = 𝑁 → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 3 | breq2 5128 | . . . . . 6 ⊢ (𝑙 = 𝑁 → (𝐾 ∥ 𝑙 ↔ 𝐾 ∥ 𝑁)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑙 = 𝑁 → (((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁))) |
| 5 | primrootlekpowne0.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
| 6 | primrootlekpowne0.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 7 | primrootlekpowne0.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 8 | 7 | nnnn0d 12567 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 9 | eqid 2736 | . . . . . . . . . 10 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 10 | 6, 8, 9 | isprimroot 42111 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 11 | 10 | biimpd 229 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 12 | 5, 11 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 13 | 12 | simp3d 1144 | . . . . . 6 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 15 | primrootlekpowne0.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ (1...(𝐾 − 1))) | |
| 16 | elfznn 13575 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ∈ ℕ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 18 | 17 | nnnn0d 12567 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝑁 ∈ ℕ0) |
| 20 | 4, 14, 19 | rspcdva 3607 | . . . 4 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((𝑁(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑁)) |
| 21 | 20 | syldbl2 841 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑁) |
| 22 | 17 | nnred 12260 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 23 | 7 | nnred 12260 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 24 | 1red 11241 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 25 | 23, 24 | resubcld 11670 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) ∈ ℝ) |
| 26 | elfzle2 13550 | . . . . . . . 8 ⊢ (𝑁 ∈ (1...(𝐾 − 1)) → 𝑁 ≤ (𝐾 − 1)) | |
| 27 | 15, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≤ (𝐾 − 1)) |
| 28 | 23 | ltm1d 12179 | . . . . . . 7 ⊢ (𝜑 → (𝐾 − 1) < 𝐾) |
| 29 | 22, 25, 23, 27, 28 | lelttrd 11398 | . . . . . 6 ⊢ (𝜑 → 𝑁 < 𝐾) |
| 30 | 22, 23 | ltnled 11387 | . . . . . 6 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ ¬ 𝐾 ≤ 𝑁)) |
| 31 | 29, 30 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ¬ 𝐾 ≤ 𝑁) |
| 32 | 8 | nn0zd 12619 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 33 | dvdsle 16334 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) | |
| 34 | 32, 17, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ 𝑁 → 𝐾 ≤ 𝑁)) |
| 35 | 34 | con3d 152 | . . . . 5 ⊢ (𝜑 → (¬ 𝐾 ≤ 𝑁 → ¬ 𝐾 ∥ 𝑁)) |
| 36 | 31, 35 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑁) |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → ¬ 𝐾 ∥ 𝑁) |
| 38 | 21, 37 | pm2.21dd 195 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) = (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| 39 | simpr 484 | . 2 ⊢ ((𝜑 ∧ (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) | |
| 40 | 38, 39 | pm2.61dane 3020 | 1 ⊢ (𝜑 → (𝑁(.g‘𝑅)𝑀) ≠ (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 1c1 11135 < clt 11274 ≤ cle 11275 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ...cfz 13529 ∥ cdvds 16277 Basecbs 17233 0gc0g 17458 .gcmg 19055 CMndccmn 19766 PrimRoots cprimroots 42109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-dvds 16278 df-primroots 42110 |
| This theorem is referenced by: primrootspoweq0 42124 |
| Copyright terms: Public domain | W3C validator |