Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones11 Structured version   Visualization version   GIF version

Theorem sticksstones11 42157
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones11.1 (𝜑𝑁 ∈ ℕ0)
sticksstones11.2 (𝜑𝐾 = 0)
sticksstones11.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones11.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones11.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones11.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones11 (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑙   𝐴,𝑏,𝑗,𝑙   𝑥,𝐴,𝑦,𝑎,𝑗,𝑙   𝐵,𝑎   𝐵,𝑏   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏   𝑔,𝐾,𝑖,𝑎   𝑁,𝑏,𝑗   𝑓,𝑁   𝑔,𝑁,𝑖   𝜑,𝑎,𝑗,𝑙   𝜑,𝑏   𝜑,𝑥,𝑦   𝑖,𝑙
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑖,𝑘)   𝐴(𝑓,𝑔,𝑖,𝑘)   𝐵(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑙)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)   𝐾(𝑘)   𝑁(𝑥,𝑦,𝑘,𝑎,𝑙)

Proof of Theorem sticksstones11
Dummy variables 𝑐 𝑑 𝑢 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones11.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 sticksstones11.2 . . . 4 (𝜑𝐾 = 0)
3 0nn0 12541 . . . . 5 0 ∈ ℕ0
43a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
52, 4eqeltrd 2841 . . 3 (𝜑𝐾 ∈ ℕ0)
6 sticksstones11.3 . . 3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
7 sticksstones11.5 . . 3 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
8 sticksstones11.6 . . 3 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
91, 5, 6, 7, 8sticksstones8 42154 . 2 (𝜑𝐹:𝐴𝐵)
10 sticksstones11.4 . . 3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
111, 2, 10, 7, 8sticksstones9 42155 . 2 (𝜑𝐺:𝐵𝐴)
127a1i 11 . . . . . . . . 9 (𝜑𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
13 nfv 1914 . . . . . . . . . . 11 𝑢𝜑
14 nfcv 2905 . . . . . . . . . . 11 𝑢{𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
15 nfcv 2905 . . . . . . . . . . 11 𝑢{{⟨1, 𝑁⟩}}
16 ffn 6736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢:{1}⟶ℕ0𝑢 Fn {1})
1716ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢 Fn {1})
18 1nn 12277 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 1 ∈ ℕ)
201adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑁 ∈ ℕ0)
21 fnsng 6618 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → {⟨1, 𝑁⟩} Fn {1})
2219, 20, 21syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → {⟨1, 𝑁⟩} Fn {1})
23 elsni 4643 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ {1} → 𝑝 = 1)
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑝 = 1)
25 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → 𝑝 = 1)
2625fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢𝑝) = (𝑢‘1))
27 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢:{1}⟶ℕ0)
28 1ex 11257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ V
2928snid 4662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 ∈ {1}
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 1 ∈ {1})
3127, 30ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → (𝑢‘1) ∈ ℕ0)
3231nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → (𝑢‘1) ∈ ℂ)
33 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = 1 → (𝑢𝑖) = (𝑢‘1))
3433sumsn 15782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((1 ∈ ℕ ∧ (𝑢‘1) ∈ ℂ) → Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1))
3519, 32, 34syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1)) → Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1))
3736eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1)) → (𝑢‘1) = Σ𝑖 ∈ {1} (𝑢𝑖))
38 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1)) → Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)
3937, 38eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1)) → (𝑢‘1) = 𝑁)
4039ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → (Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1) → (𝑢‘1) = 𝑁))
4135, 40mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → (𝑢‘1) = 𝑁)
4241adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢‘1) = 𝑁)
4318a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 1 ∈ ℕ)
4420adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑁 ∈ ℕ0)
45 fvsng 7200 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
4643, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
4746eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑁 = ({⟨1, 𝑁⟩}‘1))
4842, 47eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢‘1) = ({⟨1, 𝑁⟩}‘1))
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢‘1) = ({⟨1, 𝑁⟩}‘1))
5025eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → 1 = 𝑝)
5150fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → ({⟨1, 𝑁⟩}‘1) = ({⟨1, 𝑁⟩}‘𝑝))
5226, 49, 513eqtrd 2781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢𝑝) = ({⟨1, 𝑁⟩}‘𝑝))
5324, 52mpdan 687 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢𝑝) = ({⟨1, 𝑁⟩}‘𝑝))
5417, 22, 53eqfnfvd 7054 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢 = {⟨1, 𝑁⟩})
55 fsng 7157 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {⟨1, 𝑁⟩}))
5619, 20, 55syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {⟨1, 𝑁⟩}))
5754, 56mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁})
58 ssidd 4007 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → {𝑁} ⊆ {𝑁})
59 fss 6752 . . . . . . . . . . . . . . . . . . . 20 ((𝑢:{1}⟶{𝑁} ∧ {𝑁} ⊆ {𝑁}) → 𝑢:{1}⟶{𝑁})
6057, 58, 59syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁})
6160, 58, 59syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁})
6261, 56mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢 = {⟨1, 𝑁⟩})
63 vex 3484 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
6463elsn 4641 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {{⟨1, 𝑁⟩}} ↔ 𝑢 = {⟨1, 𝑁⟩})
6562, 64sylibr 234 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)) → 𝑢 ∈ {{⟨1, 𝑁⟩}})
6665ex 412 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁) → 𝑢 ∈ {{⟨1, 𝑁⟩}}))
67 1zzd 12648 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ∈ ℤ)
68 fzsn 13606 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → (1...1) = {1})
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1...1) = {1})
7069eqcomd 2743 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {1} = (1...1))
71 1e0p1 12775 . . . . . . . . . . . . . . . . . . . . . 22 1 = (0 + 1)
7271a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 = (0 + 1))
7372oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1...1) = (1...(0 + 1)))
7470, 73eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {1} = (1...(0 + 1)))
752eqcomd 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 = 𝐾)
7675oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 + 1) = (𝐾 + 1))
7776oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(0 + 1)) = (1...(𝐾 + 1)))
7874, 77eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (𝜑 → {1} = (1...(𝐾 + 1)))
7978feq2d 6722 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢:{1}⟶ℕ0𝑢:(1...(𝐾 + 1))⟶ℕ0))
8078sumeq1d 15736 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ𝑖 ∈ {1} (𝑢𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖))
8180eqeq1d 2739 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁))
8279, 81anbi12d 632 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁) ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)))
8382imbi1d 341 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑢:{1}⟶ℕ0 ∧ Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁) → 𝑢 ∈ {{⟨1, 𝑁⟩}}) ↔ ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁) → 𝑢 ∈ {{⟨1, 𝑁⟩}})))
8466, 83mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁) → 𝑢 ∈ {{⟨1, 𝑁⟩}}))
85 feq1 6716 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑢 → (𝑔:(1...(𝐾 + 1))⟶ℕ0𝑢:(1...(𝐾 + 1))⟶ℕ0))
86 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 = 𝑢𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑢)
8786fveq1d 6908 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 = 𝑢𝑖 ∈ (1...(𝐾 + 1))) → (𝑔𝑖) = (𝑢𝑖))
8887sumeq2dv 15738 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑢 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖))
8988eqeq1d 2739 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑢 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁))
9085, 89anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑢 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁) ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)))
9163, 90elab 3679 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁))
9291a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)))
9392imbi1d 341 . . . . . . . . . . . . . 14 (𝜑 → ((𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → 𝑢 ∈ {{⟨1, 𝑁⟩}}) ↔ ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁) → 𝑢 ∈ {{⟨1, 𝑁⟩}})))
9484, 93mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → 𝑢 ∈ {{⟨1, 𝑁⟩}}))
9594imp 406 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}) → 𝑢 ∈ {{⟨1, 𝑁⟩}})
9695ex 412 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} → 𝑢 ∈ {{⟨1, 𝑁⟩}}))
9713, 14, 15, 96ssrd 3988 . . . . . . . . . 10 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} ⊆ {{⟨1, 𝑁⟩}})
9818a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℕ)
9998, 1, 55syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {⟨1, 𝑁⟩}))
10099bicomd 223 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑢 = {⟨1, 𝑁⟩} ↔ 𝑢:{1}⟶{𝑁}))
101100biimpd 229 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢 = {⟨1, 𝑁⟩} → 𝑢:{1}⟶{𝑁}))
102 elsni 4643 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {{⟨1, 𝑁⟩}} → 𝑢 = {⟨1, 𝑁⟩})
103101, 102impel 505 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → 𝑢:{1}⟶{𝑁})
1041snssd 4809 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑁} ⊆ ℕ0)
105104adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → {𝑁} ⊆ ℕ0)
106 fss 6752 . . . . . . . . . . . . . . . 16 ((𝑢:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → 𝑢:{1}⟶ℕ0)
107103, 105, 106syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → 𝑢:{1}⟶ℕ0)
10879adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → (𝑢:{1}⟶ℕ0𝑢:(1...(𝐾 + 1))⟶ℕ0))
109107, 108mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → 𝑢:(1...(𝐾 + 1))⟶ℕ0)
110102adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → 𝑢 = {⟨1, 𝑁⟩})
111783ad2ant1 1134 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → {1} = (1...(𝐾 + 1)))
112111eqcomd 2743 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → (1...(𝐾 + 1)) = {1})
113112sumeq1d 15736 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = Σ𝑖 ∈ {1} (𝑢𝑖))
11418a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 1 ∈ ℕ)
11513ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 𝑁 ∈ ℕ0)
116115nn0cnd 12589 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 𝑁 ∈ ℂ)
117114, 115, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → ({⟨1, 𝑁⟩}‘1) = 𝑁)
118117eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 𝑁 = ({⟨1, 𝑁⟩}‘1))
1191103adant3 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 𝑢 = {⟨1, 𝑁⟩})
120119fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → (𝑢‘1) = ({⟨1, 𝑁⟩}‘1))
121118, 120eqtr4d 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → 𝑁 = (𝑢‘1))
122121eleq1d 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → (𝑁 ∈ ℂ ↔ (𝑢‘1) ∈ ℂ))
123116, 122mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → (𝑢‘1) ∈ ℂ)
124114, 123, 34syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → Σ𝑖 ∈ {1} (𝑢𝑖) = (𝑢‘1))
125120, 117eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → (𝑢‘1) = 𝑁)
126124, 125eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → Σ𝑖 ∈ {1} (𝑢𝑖) = 𝑁)
127113, 126eqtrd 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}} ∧ 𝑢 = {⟨1, 𝑁⟩}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)
1281273expa 1119 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) ∧ 𝑢 = {⟨1, 𝑁⟩}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)
129110, 128mpdan 687 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁)
130109, 129jca 511 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢𝑖) = 𝑁))
131130, 91sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ {{⟨1, 𝑁⟩}}) → 𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
132131ex 412 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ {{⟨1, 𝑁⟩}} → 𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}))
13313, 15, 14, 132ssrd 3988 . . . . . . . . . 10 (𝜑 → {{⟨1, 𝑁⟩}} ⊆ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)})
13497, 133eqssd 4001 . . . . . . . . 9 (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)} = {{⟨1, 𝑁⟩}})
13512, 134eqtrd 2777 . . . . . . . 8 (𝜑𝐴 = {{⟨1, 𝑁⟩}})
136 eqss 3999 . . . . . . . . . 10 (𝐴 = {{⟨1, 𝑁⟩}} ↔ (𝐴 ⊆ {{⟨1, 𝑁⟩}} ∧ {{⟨1, 𝑁⟩}} ⊆ 𝐴))
137136biimpi 216 . . . . . . . . 9 (𝐴 = {{⟨1, 𝑁⟩}} → (𝐴 ⊆ {{⟨1, 𝑁⟩}} ∧ {{⟨1, 𝑁⟩}} ⊆ 𝐴))
138137simpld 494 . . . . . . . 8 (𝐴 = {{⟨1, 𝑁⟩}} → 𝐴 ⊆ {{⟨1, 𝑁⟩}})
139135, 138syl 17 . . . . . . 7 (𝜑𝐴 ⊆ {{⟨1, 𝑁⟩}})
140 fss 6752 . . . . . . 7 ((𝐺:𝐵𝐴𝐴 ⊆ {{⟨1, 𝑁⟩}}) → 𝐺:𝐵⟶{{⟨1, 𝑁⟩}})
14111, 139, 140syl2anc 584 . . . . . 6 (𝜑𝐺:𝐵⟶{{⟨1, 𝑁⟩}})
142141adantr 480 . . . . 5 ((𝜑𝑐𝐴) → 𝐺:𝐵⟶{{⟨1, 𝑁⟩}})
1439ffvelcdmda 7104 . . . . 5 ((𝜑𝑐𝐴) → (𝐹𝑐) ∈ 𝐵)
144 fvconst 7184 . . . . 5 ((𝐺:𝐵⟶{{⟨1, 𝑁⟩}} ∧ (𝐹𝑐) ∈ 𝐵) → (𝐺‘(𝐹𝑐)) = {⟨1, 𝑁⟩})
145142, 143, 144syl2anc 584 . . . 4 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = {⟨1, 𝑁⟩})
146135eleq2d 2827 . . . . . . . 8 (𝜑 → (𝑐𝐴𝑐 ∈ {{⟨1, 𝑁⟩}}))
147146biimpd 229 . . . . . . 7 (𝜑 → (𝑐𝐴𝑐 ∈ {{⟨1, 𝑁⟩}}))
148147imp 406 . . . . . 6 ((𝜑𝑐𝐴) → 𝑐 ∈ {{⟨1, 𝑁⟩}})
149 vex 3484 . . . . . . 7 𝑐 ∈ V
150149elsn 4641 . . . . . 6 (𝑐 ∈ {{⟨1, 𝑁⟩}} ↔ 𝑐 = {⟨1, 𝑁⟩})
151148, 150sylib 218 . . . . 5 ((𝜑𝑐𝐴) → 𝑐 = {⟨1, 𝑁⟩})
152151eqcomd 2743 . . . 4 ((𝜑𝑐𝐴) → {⟨1, 𝑁⟩} = 𝑐)
153145, 152eqtrd 2777 . . 3 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = 𝑐)
154153ralrimiva 3146 . 2 (𝜑 → ∀𝑐𝐴 (𝐺‘(𝐹𝑐)) = 𝑐)
155 simpr 484 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝑑𝐵)
156 nfv 1914 . . . . . . . . . . 11 𝑑𝜑
157 nfcv 2905 . . . . . . . . . . 11 𝑑𝐵
158 nfcv 2905 . . . . . . . . . . 11 𝑑{∅}
1598a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑𝐵) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
160159eleq2d 2827 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑𝐵) → (𝑑𝐵𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}))
161160biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑𝐵) → (𝑑𝐵𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}))
162161syldbl2 842 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑𝐵) → 𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
163 vex 3484 . . . . . . . . . . . . . . . . . . 19 𝑑 ∈ V
164 feq1 6716 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑑 → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
165 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑑 → (𝑓𝑥) = (𝑑𝑥))
166 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑑 → (𝑓𝑦) = (𝑑𝑦))
167165, 166breq12d 5156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑑 → ((𝑓𝑥) < (𝑓𝑦) ↔ (𝑑𝑥) < (𝑑𝑦)))
168167imbi2d 340 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑑 → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
1691682ralbidv 3221 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑑 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
170164, 169anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑑 → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦)))))
171163, 170elab 3679 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
172162, 171sylib 218 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑𝑥) < (𝑑𝑦))))
173172simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
174 0lt1 11785 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
175174a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 1)
1762, 175eqbrtrd 5165 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 < 1)
1775nn0zd 12639 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℤ)
178 fzn 13580 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < 1 ↔ (1...𝐾) = ∅))
17967, 177, 178syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 < 1 ↔ (1...𝐾) = ∅))
180176, 179mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝐾) = ∅)
181180feq2d 6722 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:∅⟶(1...(𝑁 + 𝐾))))
182181adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑑𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:∅⟶(1...(𝑁 + 𝐾))))
183173, 182mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑑𝐵) → 𝑑:∅⟶(1...(𝑁 + 𝐾)))
184 f0bi 6791 . . . . . . . . . . . . . . 15 (𝑑:∅⟶(1...(𝑁 + 𝐾)) ↔ 𝑑 = ∅)
185183, 184sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑑𝐵) → 𝑑 = ∅)
186 velsn 4642 . . . . . . . . . . . . . 14 (𝑑 ∈ {∅} ↔ 𝑑 = ∅)
187185, 186sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → 𝑑 ∈ {∅})
188187ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑑𝐵𝑑 ∈ {∅}))
189 f0 6789 . . . . . . . . . . . . . . . . . . . 20 ∅:∅⟶(1...(𝑁 + 𝐾))
190189a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅:∅⟶(1...(𝑁 + 𝐾)))
191180feq2d 6722 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ ∅:∅⟶(1...(𝑁 + 𝐾))))
192190, 191mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)))
193 ral0 4513 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ ∅ ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))
194193a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ∅ ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))
195194, 180raleqtrrdv 3330 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))
196192, 195jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))
197 0ex 5307 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
198 feq1 6716 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = ∅ → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ ∅:(1...𝐾)⟶(1...(𝑁 + 𝐾))))
199 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = ∅ → (𝑓𝑥) = (∅‘𝑥))
200 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = ∅ → (𝑓𝑦) = (∅‘𝑦))
201199, 200breq12d 5156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = ∅ → ((𝑓𝑥) < (𝑓𝑦) ↔ (∅‘𝑥) < (∅‘𝑦)))
202201imbi2d 340 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = ∅ → ((𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ (𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))
2032022ralbidv 3221 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = ∅ → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))
204198, 203anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = ∅ → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦))) ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))))
205204elabg 3676 . . . . . . . . . . . . . . . . . 18 (∅ ∈ V → (∅ ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))))
206197, 205ax-mp 5 . . . . . . . . . . . . . . . . 17 (∅ ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))} ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))
207196, 206sylibr 234 . . . . . . . . . . . . . . . 16 (𝜑 → ∅ ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
2088a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))})
209207, 208eleqtrrd 2844 . . . . . . . . . . . . . . 15 (𝜑 → ∅ ∈ 𝐵)
210209adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ {∅}) → ∅ ∈ 𝐵)
211 elsni 4643 . . . . . . . . . . . . . . . 16 (𝑑 ∈ {∅} → 𝑑 = ∅)
212211adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ {∅}) → 𝑑 = ∅)
213212eleq1d 2826 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ {∅}) → (𝑑𝐵 ↔ ∅ ∈ 𝐵))
214210, 213mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ {∅}) → 𝑑𝐵)
215214ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑑 ∈ {∅} → 𝑑𝐵))
216188, 215impbid 212 . . . . . . . . . . 11 (𝜑 → (𝑑𝐵𝑑 ∈ {∅}))
217156, 157, 158, 216eqrd 4003 . . . . . . . . . 10 (𝜑𝐵 = {∅})
218217adantr 480 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝐵 = {∅})
219155, 218eleqtrd 2843 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝑑 ∈ {∅})
220163elsn 4641 . . . . . . . 8 (𝑑 ∈ {∅} ↔ 𝑑 = ∅)
221219, 220sylib 218 . . . . . . 7 ((𝜑𝑑𝐵) → 𝑑 = ∅)
222221fveq2d 6910 . . . . . 6 ((𝜑𝑑𝐵) → (𝐺𝑑) = (𝐺‘∅))
223222fveq2d 6910 . . . . 5 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝐹‘(𝐺‘∅)))
224180adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (1...𝐾) = ∅)
225224mpteq1d 5237 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
226 mpt0 6710 . . . . . . . . . . 11 (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅
227226a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅)
228225, 227eqtrd 2777 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅)
229 fzfid 14014 . . . . . . . . . . . 12 (𝜑 → (1...𝐾) ∈ Fin)
230229mptexd 7244 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V)
231 elsng 4640 . . . . . . . . . . 11 ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅))
232230, 231syl 17 . . . . . . . . . 10 (𝜑 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅))
233232adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) = ∅))
234228, 233mpbird 257 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))) ∈ {∅})
235234, 6fmptd 7134 . . . . . . 7 (𝜑𝐹:𝐴⟶{∅})
236235adantr 480 . . . . . 6 ((𝜑𝑑𝐵) → 𝐹:𝐴⟶{∅})
237 ffvelcdm 7101 . . . . . . . 8 ((𝐺:𝐵𝐴 ∧ ∅ ∈ 𝐵) → (𝐺‘∅) ∈ 𝐴)
23811, 209, 237syl2anc 584 . . . . . . 7 (𝜑 → (𝐺‘∅) ∈ 𝐴)
239238adantr 480 . . . . . 6 ((𝜑𝑑𝐵) → (𝐺‘∅) ∈ 𝐴)
240 fvconst 7184 . . . . . 6 ((𝐹:𝐴⟶{∅} ∧ (𝐺‘∅) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) = ∅)
241236, 239, 240syl2anc 584 . . . . 5 ((𝜑𝑑𝐵) → (𝐹‘(𝐺‘∅)) = ∅)
242223, 241eqtrd 2777 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = ∅)
243221eqcomd 2743 . . . 4 ((𝜑𝑑𝐵) → ∅ = 𝑑)
244242, 243eqtrd 2777 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
245244ralrimiva 3146 . 2 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
2469, 11, 154, 2452fvidf1od 7318 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  Vcvv 3480  wss 3951  c0 4333  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sticksstones13  42160
  Copyright terms: Public domain W3C validator