| Step | Hyp | Ref
| Expression |
| 1 | | sticksstones11.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | sticksstones11.2 |
. . . 4
⊢ (𝜑 → 𝐾 = 0) |
| 3 | | 0nn0 12521 |
. . . . 5
⊢ 0 ∈
ℕ0 |
| 4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
ℕ0) |
| 5 | 2, 4 | eqeltrd 2835 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 6 | | sticksstones11.3 |
. . 3
⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| 7 | | sticksstones11.5 |
. . 3
⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| 8 | | sticksstones11.6 |
. . 3
⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| 9 | 1, 5, 6, 7, 8 | sticksstones8 42171 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 10 | | sticksstones11.4 |
. . 3
⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
| 11 | 1, 2, 10, 7, 8 | sticksstones9 42172 |
. 2
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 12 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 13 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝜑 |
| 14 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢{𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| 15 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢{{〈1, 𝑁〉}} |
| 16 | | ffn 6711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢:{1}⟶ℕ0
→ 𝑢 Fn
{1}) |
| 17 | 16 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢 Fn {1}) |
| 18 | | 1nn 12256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℕ |
| 19 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 1 ∈ ℕ) |
| 20 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑁 ∈
ℕ0) |
| 21 | | fnsng 6593 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℕ ∧ 𝑁
∈ ℕ0) → {〈1, 𝑁〉} Fn {1}) |
| 22 | 19, 20, 21 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → {〈1, 𝑁〉} Fn {1}) |
| 23 | | elsni 4623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ∈ {1} → 𝑝 = 1) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑝 = 1) |
| 25 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → 𝑝 = 1) |
| 26 | 25 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢‘𝑝) = (𝑢‘1)) |
| 27 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢:{1}⟶ℕ0) |
| 28 | | 1ex 11236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 1 ∈
V |
| 29 | 28 | snid 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
{1} |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 1 ∈ {1}) |
| 31 | 27, 30 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → (𝑢‘1) ∈
ℕ0) |
| 32 | 31 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → (𝑢‘1) ∈ ℂ) |
| 33 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 1 → (𝑢‘𝑖) = (𝑢‘1)) |
| 34 | 33 | sumsn 15767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((1
∈ ℕ ∧ (𝑢‘1) ∈ ℂ) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) |
| 35 | 19, 32, 34 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) |
| 37 | 36 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) → (𝑢‘1) = Σ𝑖 ∈ {1} (𝑢‘𝑖)) |
| 38 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁) |
| 39 | 37, 38 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) → (𝑢‘1) = 𝑁) |
| 40 | 39 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → (Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1) → (𝑢‘1) = 𝑁)) |
| 41 | 35, 40 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → (𝑢‘1) = 𝑁) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢‘1) = 𝑁) |
| 43 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 1 ∈
ℕ) |
| 44 | 20 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑁 ∈
ℕ0) |
| 45 | | fvsng 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((1
∈ ℕ ∧ 𝑁
∈ ℕ0) → ({〈1, 𝑁〉}‘1) = 𝑁) |
| 46 | 43, 44, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → ({〈1, 𝑁〉}‘1) = 𝑁) |
| 47 | 46 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → 𝑁 = ({〈1, 𝑁〉}‘1)) |
| 48 | 42, 47 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢‘1) = ({〈1, 𝑁〉}‘1)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢‘1) = ({〈1, 𝑁〉}‘1)) |
| 50 | 25 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → 1 = 𝑝) |
| 51 | 50 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → ({〈1, 𝑁〉}‘1) = ({〈1, 𝑁〉}‘𝑝)) |
| 52 | 26, 49, 51 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) ∧ 𝑝 = 1) → (𝑢‘𝑝) = ({〈1, 𝑁〉}‘𝑝)) |
| 53 | 24, 52 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) ∧ 𝑝 ∈ {1}) → (𝑢‘𝑝) = ({〈1, 𝑁〉}‘𝑝)) |
| 54 | 17, 22, 53 | eqfnfvd 7029 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢 = {〈1, 𝑁〉}) |
| 55 | | fsng 7132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℕ ∧ 𝑁
∈ ℕ0) → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {〈1, 𝑁〉})) |
| 56 | 19, 20, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {〈1, 𝑁〉})) |
| 57 | 54, 56 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁}) |
| 58 | | ssidd 3987 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → {𝑁} ⊆ {𝑁}) |
| 59 | | fss 6727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢:{1}⟶{𝑁} ∧ {𝑁} ⊆ {𝑁}) → 𝑢:{1}⟶{𝑁}) |
| 60 | 57, 58, 59 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁}) |
| 61 | 60, 58, 59 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢:{1}⟶{𝑁}) |
| 62 | 61, 56 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢 = {〈1, 𝑁〉}) |
| 63 | | vex 3468 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑢 ∈ V |
| 64 | 63 | elsn 4621 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {{〈1, 𝑁〉}} ↔ 𝑢 = {〈1, 𝑁〉}) |
| 65 | 62, 64 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁)) → 𝑢 ∈ {{〈1, 𝑁〉}}) |
| 66 | 65 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁) → 𝑢 ∈ {{〈1, 𝑁〉}})) |
| 67 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 1 ∈
ℤ) |
| 68 | | fzsn 13588 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1...1) =
{1}) |
| 70 | 69 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {1} =
(1...1)) |
| 71 | | 1e0p1 12755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 = (0 +
1) |
| 72 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 = (0 +
1)) |
| 73 | 72 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...1) = (1...(0 +
1))) |
| 74 | 70, 73 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {1} = (1...(0 +
1))) |
| 75 | 2 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 = 𝐾) |
| 76 | 75 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (0 + 1) = (𝐾 + 1)) |
| 77 | 76 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1...(0 + 1)) =
(1...(𝐾 +
1))) |
| 78 | 74, 77 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {1} = (1...(𝐾 + 1))) |
| 79 | 78 | feq2d 6697 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑢:{1}⟶ℕ0 ↔ 𝑢:(1...(𝐾 +
1))⟶ℕ0)) |
| 80 | 78 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Σ𝑖 ∈ {1} (𝑢‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖)) |
| 81 | 80 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁)) |
| 82 | 79, 81 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁) ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁))) |
| 83 | 82 | imbi1d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑢:{1}⟶ℕ0 ∧
Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁) → 𝑢 ∈ {{〈1, 𝑁〉}}) ↔ ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) → 𝑢 ∈ {{〈1, 𝑁〉}}))) |
| 84 | 66, 83 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) → 𝑢 ∈ {{〈1, 𝑁〉}})) |
| 85 | | feq1 6691 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑢 → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔
𝑢:(1...(𝐾 +
1))⟶ℕ0)) |
| 86 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 = 𝑢 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑢) |
| 87 | 86 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 = 𝑢 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔‘𝑖) = (𝑢‘𝑖)) |
| 88 | 87 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑢 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖)) |
| 89 | 88 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑢 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁)) |
| 90 | 85, 89 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑢 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁))) |
| 91 | 63, 90 | elab 3663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁)) |
| 92 | 91 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁))) |
| 93 | 92 | imbi1d 341 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → 𝑢 ∈ {{〈1, 𝑁〉}}) ↔ ((𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) → 𝑢 ∈ {{〈1, 𝑁〉}}))) |
| 94 | 84, 93 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → 𝑢 ∈ {{〈1, 𝑁〉}})) |
| 95 | 94 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) → 𝑢 ∈ {{〈1, 𝑁〉}}) |
| 96 | 95 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → 𝑢 ∈ {{〈1, 𝑁〉}})) |
| 97 | 13, 14, 15, 96 | ssrd 3968 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⊆ {{〈1, 𝑁〉}}) |
| 98 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℕ) |
| 99 | 98, 1, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑢:{1}⟶{𝑁} ↔ 𝑢 = {〈1, 𝑁〉})) |
| 100 | 99 | bicomd 223 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑢 = {〈1, 𝑁〉} ↔ 𝑢:{1}⟶{𝑁})) |
| 101 | 100 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑢 = {〈1, 𝑁〉} → 𝑢:{1}⟶{𝑁})) |
| 102 | | elsni 4623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {{〈1, 𝑁〉}} → 𝑢 = {〈1, 𝑁〉}) |
| 103 | 101, 102 | impel 505 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → 𝑢:{1}⟶{𝑁}) |
| 104 | 1 | snssd 4790 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {𝑁} ⊆
ℕ0) |
| 105 | 104 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → {𝑁} ⊆
ℕ0) |
| 106 | | fss 6727 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢:{1}⟶{𝑁} ∧ {𝑁} ⊆ ℕ0) → 𝑢:{1}⟶ℕ0) |
| 107 | 103, 105,
106 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → 𝑢:{1}⟶ℕ0) |
| 108 | 79 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → (𝑢:{1}⟶ℕ0 ↔ 𝑢:(1...(𝐾 +
1))⟶ℕ0)) |
| 109 | 107, 108 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → 𝑢:(1...(𝐾 +
1))⟶ℕ0) |
| 110 | 102 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → 𝑢 = {〈1, 𝑁〉}) |
| 111 | 78 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → {1} = (1...(𝐾 + 1))) |
| 112 | 111 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → (1...(𝐾 + 1)) = {1}) |
| 113 | 112 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = Σ𝑖 ∈ {1} (𝑢‘𝑖)) |
| 114 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 1 ∈
ℕ) |
| 115 | 1 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 𝑁 ∈
ℕ0) |
| 116 | 115 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 𝑁 ∈ ℂ) |
| 117 | 114, 115,
45 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → ({〈1, 𝑁〉}‘1) = 𝑁) |
| 118 | 117 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 𝑁 = ({〈1, 𝑁〉}‘1)) |
| 119 | 110 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 𝑢 = {〈1, 𝑁〉}) |
| 120 | 119 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → (𝑢‘1) = ({〈1, 𝑁〉}‘1)) |
| 121 | 118, 120 | eqtr4d 2774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → 𝑁 = (𝑢‘1)) |
| 122 | 121 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → (𝑁 ∈ ℂ ↔ (𝑢‘1) ∈ ℂ)) |
| 123 | 116, 122 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → (𝑢‘1) ∈ ℂ) |
| 124 | 114, 123,
34 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = (𝑢‘1)) |
| 125 | 120, 117 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → (𝑢‘1) = 𝑁) |
| 126 | 124, 125 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → Σ𝑖 ∈ {1} (𝑢‘𝑖) = 𝑁) |
| 127 | 113, 126 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}} ∧ 𝑢 = {〈1, 𝑁〉}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) |
| 128 | 127 | 3expa 1118 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) ∧ 𝑢 = {〈1, 𝑁〉}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) |
| 129 | 110, 128 | mpdan 687 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁) |
| 130 | 109, 129 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → (𝑢:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑢‘𝑖) = 𝑁)) |
| 131 | 130, 91 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ {{〈1, 𝑁〉}}) → 𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 132 | 131 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ {{〈1, 𝑁〉}} → 𝑢 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)})) |
| 133 | 13, 15, 14, 132 | ssrd 3968 |
. . . . . . . . . 10
⊢ (𝜑 → {{〈1, 𝑁〉}} ⊆ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 134 | 97, 133 | eqssd 3981 |
. . . . . . . . 9
⊢ (𝜑 → {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} = {{〈1, 𝑁〉}}) |
| 135 | 12, 134 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = {{〈1, 𝑁〉}}) |
| 136 | | eqss 3979 |
. . . . . . . . . 10
⊢ (𝐴 = {{〈1, 𝑁〉}} ↔ (𝐴 ⊆ {{〈1, 𝑁〉}} ∧ {{〈1, 𝑁〉}} ⊆ 𝐴)) |
| 137 | 136 | biimpi 216 |
. . . . . . . . 9
⊢ (𝐴 = {{〈1, 𝑁〉}} → (𝐴 ⊆ {{〈1, 𝑁〉}} ∧ {{〈1, 𝑁〉}} ⊆ 𝐴)) |
| 138 | 137 | simpld 494 |
. . . . . . . 8
⊢ (𝐴 = {{〈1, 𝑁〉}} → 𝐴 ⊆ {{〈1, 𝑁〉}}) |
| 139 | 135, 138 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ {{〈1, 𝑁〉}}) |
| 140 | | fss 6727 |
. . . . . . 7
⊢ ((𝐺:𝐵⟶𝐴 ∧ 𝐴 ⊆ {{〈1, 𝑁〉}}) → 𝐺:𝐵⟶{{〈1, 𝑁〉}}) |
| 141 | 11, 139, 140 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐵⟶{{〈1, 𝑁〉}}) |
| 142 | 141 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐺:𝐵⟶{{〈1, 𝑁〉}}) |
| 143 | 9 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐹‘𝑐) ∈ 𝐵) |
| 144 | | fvconst 7159 |
. . . . 5
⊢ ((𝐺:𝐵⟶{{〈1, 𝑁〉}} ∧ (𝐹‘𝑐) ∈ 𝐵) → (𝐺‘(𝐹‘𝑐)) = {〈1, 𝑁〉}) |
| 145 | 142, 143,
144 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = {〈1, 𝑁〉}) |
| 146 | 135 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝜑 → (𝑐 ∈ 𝐴 ↔ 𝑐 ∈ {{〈1, 𝑁〉}})) |
| 147 | 146 | biimpd 229 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ 𝐴 → 𝑐 ∈ {{〈1, 𝑁〉}})) |
| 148 | 147 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ {{〈1, 𝑁〉}}) |
| 149 | | vex 3468 |
. . . . . . 7
⊢ 𝑐 ∈ V |
| 150 | 149 | elsn 4621 |
. . . . . 6
⊢ (𝑐 ∈ {{〈1, 𝑁〉}} ↔ 𝑐 = {〈1, 𝑁〉}) |
| 151 | 148, 150 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 = {〈1, 𝑁〉}) |
| 152 | 151 | eqcomd 2742 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → {〈1, 𝑁〉} = 𝑐) |
| 153 | 145, 152 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = 𝑐) |
| 154 | 153 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝐺‘(𝐹‘𝑐)) = 𝑐) |
| 155 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 ∈ 𝐵) |
| 156 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑𝜑 |
| 157 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑𝐵 |
| 158 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑{∅} |
| 159 | 8 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
| 160 | 159 | eleq2d 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝑑 ∈ 𝐵 ↔ 𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))})) |
| 161 | 160 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝑑 ∈ 𝐵 → 𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))})) |
| 162 | 161 | syldbl2 841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
| 163 | | vex 3468 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑑 ∈ V |
| 164 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑑 → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)))) |
| 165 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑑 → (𝑓‘𝑥) = (𝑑‘𝑥)) |
| 166 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑑 → (𝑓‘𝑦) = (𝑑‘𝑦)) |
| 167 | 165, 166 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑑 → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ (𝑑‘𝑥) < (𝑑‘𝑦))) |
| 168 | 167 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑑 → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → (𝑑‘𝑥) < (𝑑‘𝑦)))) |
| 169 | 168 | 2ralbidv 3209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑑 → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑‘𝑥) < (𝑑‘𝑦)))) |
| 170 | 164, 169 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑑 → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑‘𝑥) < (𝑑‘𝑦))))) |
| 171 | 163, 170 | elab 3663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑‘𝑥) < (𝑑‘𝑦)))) |
| 172 | 162, 171 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑑‘𝑥) < (𝑑‘𝑦)))) |
| 173 | 172 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾))) |
| 174 | | 0lt1 11764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
1 |
| 175 | 174 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 < 1) |
| 176 | 2, 175 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 < 1) |
| 177 | 5 | nn0zd 12619 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 178 | | fzn 13562 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℤ ∧ 𝐾
∈ ℤ) → (𝐾
< 1 ↔ (1...𝐾) =
∅)) |
| 179 | 67, 177, 178 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐾 < 1 ↔ (1...𝐾) = ∅)) |
| 180 | 176, 179 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝐾) = ∅) |
| 181 | 180 | feq2d 6697 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:∅⟶(1...(𝑁 + 𝐾)))) |
| 182 | 181 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝑑:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ 𝑑:∅⟶(1...(𝑁 + 𝐾)))) |
| 183 | 173, 182 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑:∅⟶(1...(𝑁 + 𝐾))) |
| 184 | | f0bi 6766 |
. . . . . . . . . . . . . . 15
⊢ (𝑑:∅⟶(1...(𝑁 + 𝐾)) ↔ 𝑑 = ∅) |
| 185 | 183, 184 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 = ∅) |
| 186 | | velsn 4622 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ {∅} ↔ 𝑑 = ∅) |
| 187 | 185, 186 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 ∈ {∅}) |
| 188 | 187 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ 𝐵 → 𝑑 ∈ {∅})) |
| 189 | | f0 6764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∅:∅⟶(1...(𝑁 + 𝐾)) |
| 190 | 189 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
∅:∅⟶(1...(𝑁 + 𝐾))) |
| 191 | 180 | feq2d 6697 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ ∅:∅⟶(1...(𝑁 + 𝐾)))) |
| 192 | 190, 191 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∅:(1...𝐾)⟶(1...(𝑁 + 𝐾))) |
| 193 | | ral0 4493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
(1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)) |
| 194 | 193 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ ∅ ∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))) |
| 195 | 194, 180 | raleqtrrdv 3313 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))) |
| 196 | 192, 195 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))) |
| 197 | | 0ex 5282 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ V |
| 198 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = ∅ → (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ↔ ∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)))) |
| 199 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = ∅ → (𝑓‘𝑥) = (∅‘𝑥)) |
| 200 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = ∅ → (𝑓‘𝑦) = (∅‘𝑦)) |
| 201 | 199, 200 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = ∅ → ((𝑓‘𝑥) < (𝑓‘𝑦) ↔ (∅‘𝑥) < (∅‘𝑦))) |
| 202 | 201 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = ∅ → ((𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ (𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))) |
| 203 | 202 | 2ralbidv 3209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = ∅ → (∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)) ↔ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))) |
| 204 | 198, 203 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = ∅ → ((𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦))) ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))) |
| 205 | 204 | elabg 3660 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∈ V → (∅ ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦))))) |
| 206 | 197, 205 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ↔ (∅:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (∅‘𝑥) < (∅‘𝑦)))) |
| 207 | 196, 206 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∅ ∈ {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
| 208 | 8 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))}) |
| 209 | 207, 208 | eleqtrrd 2838 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∅ ∈ 𝐵) |
| 210 | 209 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {∅}) → ∅ ∈
𝐵) |
| 211 | | elsni 4623 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ {∅} → 𝑑 = ∅) |
| 212 | 211 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ {∅}) → 𝑑 = ∅) |
| 213 | 212 | eleq1d 2820 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {∅}) → (𝑑 ∈ 𝐵 ↔ ∅ ∈ 𝐵)) |
| 214 | 210, 213 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {∅}) → 𝑑 ∈ 𝐵) |
| 215 | 214 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑑 ∈ {∅} → 𝑑 ∈ 𝐵)) |
| 216 | 188, 215 | impbid 212 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ 𝐵 ↔ 𝑑 ∈ {∅})) |
| 217 | 156, 157,
158, 216 | eqrd 3983 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = {∅}) |
| 218 | 217 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝐵 = {∅}) |
| 219 | 155, 218 | eleqtrd 2837 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 ∈ {∅}) |
| 220 | 163 | elsn 4621 |
. . . . . . . 8
⊢ (𝑑 ∈ {∅} ↔ 𝑑 = ∅) |
| 221 | 219, 220 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝑑 = ∅) |
| 222 | 221 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐺‘𝑑) = (𝐺‘∅)) |
| 223 | 222 | fveq2d 6885 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐹‘(𝐺‘𝑑)) = (𝐹‘(𝐺‘∅))) |
| 224 | 180 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (1...𝐾) = ∅) |
| 225 | 224 | mpteq1d 5215 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| 226 | | mpt0 6685 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅ |
| 227 | 226 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ ∅ ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅) |
| 228 | 225, 227 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅) |
| 229 | | fzfid 13996 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝐾) ∈ Fin) |
| 230 | 229 | mptexd 7221 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ V) |
| 231 | | elsng 4620 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ V → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅)) |
| 232 | 230, 231 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅)) |
| 233 | 232 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {∅} ↔ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = ∅)) |
| 234 | 228, 233 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) ∈ {∅}) |
| 235 | 234, 6 | fmptd 7109 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶{∅}) |
| 236 | 235 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → 𝐹:𝐴⟶{∅}) |
| 237 | | ffvelcdm 7076 |
. . . . . . . 8
⊢ ((𝐺:𝐵⟶𝐴 ∧ ∅ ∈ 𝐵) → (𝐺‘∅) ∈ 𝐴) |
| 238 | 11, 209, 237 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘∅) ∈ 𝐴) |
| 239 | 238 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐺‘∅) ∈ 𝐴) |
| 240 | | fvconst 7159 |
. . . . . 6
⊢ ((𝐹:𝐴⟶{∅} ∧ (𝐺‘∅) ∈ 𝐴) → (𝐹‘(𝐺‘∅)) = ∅) |
| 241 | 236, 239,
240 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐹‘(𝐺‘∅)) = ∅) |
| 242 | 223, 241 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐹‘(𝐺‘𝑑)) = ∅) |
| 243 | 221 | eqcomd 2742 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → ∅ = 𝑑) |
| 244 | 242, 243 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵) → (𝐹‘(𝐺‘𝑑)) = 𝑑) |
| 245 | 244 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑑 ∈ 𝐵 (𝐹‘(𝐺‘𝑑)) = 𝑑) |
| 246 | 9, 11, 154, 245 | 2fvidf1od 7296 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |