Step | Hyp | Ref
| Expression |
1 | | isusgrim.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | isusgrim.w |
. . . . . 6
⊢ 𝑊 = (Vtx‘𝐻) |
3 | | isusgrim.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
4 | | isusgrim.d |
. . . . . 6
⊢ 𝐷 = (Edg‘𝐻) |
5 | 1, 2, 3, 4 | isuspgrim0 47451 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |
6 | 5 | 3expa 1115 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷))) |
7 | | simprl 769 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → 𝐹:𝑉–1-1-onto→𝑊) |
8 | | imaeq2 6065 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = {𝑥, 𝑦} → (𝐹 “ 𝑒) = (𝐹 “ {𝑥, 𝑦})) |
9 | | eqidd 2727 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
10 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → {𝑥, 𝑦} ∈ 𝐸) |
11 | | f1ofun 6845 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑉–1-1-onto→𝑊 → Fun 𝐹) |
12 | | zfpair2 5434 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑥, 𝑦} ∈ V |
13 | | funimaexg 6645 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐹 ∧ {𝑥, 𝑦} ∈ V) → (𝐹 “ {𝑥, 𝑦}) ∈ V) |
14 | 11, 12, 13 | sylancl 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑉–1-1-onto→𝑊 → (𝐹 “ {𝑥, 𝑦}) ∈ V) |
15 | 14 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ V) |
16 | 8, 9, 10, 15 | fvmptd4 7033 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})) |
17 | 16 | ex 411 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑉–1-1-onto→𝑊 → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))) |
18 | 17 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))) |
19 | 18 | ad2antlr 725 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))) |
20 | 19 | imp 405 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})) |
21 | | f1of 6843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸⟶𝐷) |
22 | 21 | ad2antll 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸⟶𝐷) |
23 | | ax-1 6 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∉ 𝐷 → (𝐻 ∈ USPGraph → ∅
∉ 𝐷)) |
24 | | nnel 3046 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
∅ ∉ 𝐷 ↔
∅ ∈ 𝐷) |
25 | | uspgruhgr 29120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐻 ∈ USPGraph → 𝐻 ∈
UHGraph) |
26 | | uhgredgn0 29064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐻 ∈ UHGraph ∧ ∅
∈ (Edg‘𝐻))
→ ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅})) |
27 | 25, 26 | sylan 578 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐻 ∈ USPGraph ∧ ∅
∈ (Edg‘𝐻))
→ ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅})) |
28 | | neldifsn 4801 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ¬
∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) |
29 | 28 | pm2.21i 119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) → ∅ ∉
𝐷) |
30 | 27, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻 ∈ USPGraph ∧ ∅
∈ (Edg‘𝐻))
→ ∅ ∉ 𝐷) |
31 | 30 | expcom 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ (Edg‘𝐻) →
(𝐻 ∈ USPGraph →
∅ ∉ 𝐷)) |
32 | 31, 4 | eleq2s 2844 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∈ 𝐷 → (𝐻 ∈ USPGraph → ∅
∉ 𝐷)) |
33 | 24, 32 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∅ ∉ 𝐷 →
(𝐻 ∈ USPGraph →
∅ ∉ 𝐷)) |
34 | 23, 33 | pm2.61i 182 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ USPGraph → ∅
∉ 𝐷) |
35 | 34 | ad2antlr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → ∅ ∉ 𝐷) |
36 | 22, 35 | jca 510 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸⟶𝐷 ∧ ∅ ∉ 𝐷)) |
37 | 36 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸⟶𝐷 ∧ ∅ ∉ 𝐷)) |
38 | | feldmfvelcdm 7100 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸⟶𝐷 ∧ ∅ ∉ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) ∈ 𝐷)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) ∈ 𝐷)) |
40 | 39 | biimpa 475 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘{𝑥, 𝑦}) ∈ 𝐷) |
41 | 20, 40 | eqeltrrd 2827 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) |
42 | | imaeq2 6065 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹 “ {𝑥, 𝑦}) → (◡𝐹 “ 𝑧) = (◡𝐹 “ (𝐹 “ {𝑥, 𝑦}))) |
43 | | imaeq2 6065 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑦 → (𝐹 “ 𝑒) = (𝐹 “ 𝑦)) |
44 | 43 | cbvmptv 5266 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)) |
45 | | f1oeq1 6831 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 ↔ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷)) |
46 | 44, 45 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 ↔ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷)) |
47 | | imaeq2 6065 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑥 → (𝐹 “ 𝑒) = (𝐹 “ 𝑥)) |
48 | 47 | cbvmptv 5266 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
49 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → 𝐹:𝑉–1-1-onto→𝑊) |
50 | 49 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → 𝐹:𝑉–1-1-onto→𝑊) |
51 | | uspgruhgr 29120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UHGraph) |
52 | | uhgredgss 29067 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ UHGraph →
(Edg‘𝐺) ⊆
(𝒫 (Vtx‘𝐺)
∖ {∅})) |
53 | | difss2 4133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((Edg‘𝐺)
⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (Edg‘𝐺) ⊆ 𝒫
(Vtx‘𝐺)) |
54 | 51, 52, 53 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USPGraph →
(Edg‘𝐺) ⊆
𝒫 (Vtx‘𝐺)) |
55 | 1 | pweqi 4623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝒫
𝑉 = 𝒫
(Vtx‘𝐺) |
56 | 54, 3, 55 | 3sstr4g 4025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 ∈ USPGraph → 𝐸 ⊆ 𝒫 𝑉) |
57 | 56 | adantr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐸 ⊆ 𝒫 𝑉) |
58 | 57 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → 𝐸 ⊆ 𝒫 𝑉) |
59 | | f1ofo 6850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷 → (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–onto→𝐷) |
60 | 44 | rneqi 5943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ran
(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = ran (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)) |
61 | | forn 6818 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–onto→𝐷 → ran (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)) = 𝐷) |
62 | 60, 61 | eqtrid 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–onto→𝐷 → ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = 𝐷) |
63 | 59, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷 → ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = 𝐷) |
64 | 63 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = 𝐷) |
65 | | uhgredgss 29067 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐻 ∈ UHGraph →
(Edg‘𝐻) ⊆
(𝒫 (Vtx‘𝐻)
∖ {∅})) |
66 | | difss2 4133 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((Edg‘𝐻)
⊆ (𝒫 (Vtx‘𝐻) ∖ {∅}) → (Edg‘𝐻) ⊆ 𝒫
(Vtx‘𝐻)) |
67 | 25, 65, 66 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐻 ∈ USPGraph →
(Edg‘𝐻) ⊆
𝒫 (Vtx‘𝐻)) |
68 | 2 | pweqi 4623 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝒫
𝑊 = 𝒫
(Vtx‘𝐻) |
69 | 67, 4, 68 | 3sstr4g 4025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐻 ∈ USPGraph → 𝐷 ⊆ 𝒫 𝑊) |
70 | 69 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐷 ⊆ 𝒫 𝑊) |
71 | 70 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → 𝐷 ⊆ 𝒫 𝑊) |
72 | 64, 71 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ⊆ 𝒫 𝑊) |
73 | 1 | fvexi 6915 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑉 ∈ V |
74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → 𝑉 ∈ V) |
75 | 48, 50, 58, 72, 74 | mptcnfimad 8000 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) ∧ (𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷) → ◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑧 ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ↦ (◡𝐹 “ 𝑧))) |
76 | 75 | ex 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑦 ∈ 𝐸 ↦ (𝐹 “ 𝑦)):𝐸–1-1-onto→𝐷 → ◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑧 ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ↦ (◡𝐹 “ 𝑧)))) |
77 | 46, 76 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉–1-1-onto→𝑊) → ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 → ◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑧 ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ↦ (◡𝐹 “ 𝑧)))) |
78 | 77 | impr 453 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → ◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑧 ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ↦ (◡𝐹 “ 𝑧))) |
79 | 78 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = (𝑧 ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) ↦ (◡𝐹 “ 𝑧))) |
80 | | f1ofo 6850 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–onto→𝐷) |
81 | | forn 6818 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–onto→𝐷 → ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)) = 𝐷) |
82 | 81 | eqcomd 2732 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–onto→𝐷 → 𝐷 = ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
83 | 80, 82 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 → 𝐷 = ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
84 | 83 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) → 𝐷 = ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
85 | 84 | ad2antlr 725 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝐷 = ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
86 | 85 | eleq2d 2812 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)))) |
87 | 86 | biimpa 475 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))) |
88 | | dff1o2 6848 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑉–1-1-onto→𝑊 ↔ (𝐹 Fn 𝑉 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝑊)) |
89 | 88 | simp2bi 1143 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝑊 → Fun ◡𝐹) |
90 | 89 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) → Fun ◡𝐹) |
91 | 90 | ad2antlr 725 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → Fun ◡𝐹) |
92 | | funimaexg 6645 |
. . . . . . . . . . . . . 14
⊢ ((Fun
◡𝐹 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V) |
93 | 91, 92 | sylan 578 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V) |
94 | 42, 79, 87, 93 | fvmptd4 7033 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘(𝐹 “ {𝑥, 𝑦})) = (◡𝐹 “ (𝐹 “ {𝑥, 𝑦}))) |
95 | | simplrr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) |
96 | | f1ocnvdm 7299 |
. . . . . . . . . . . . 13
⊢ (((𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸) |
97 | 95, 96 | sylan 578 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡(𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸) |
98 | 94, 97 | eqeltrrd 2827 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸) |
99 | | f1of1 6842 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
100 | 99 | ad2antrl 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → 𝐹:𝑉–1-1→𝑊) |
101 | | prssi 4830 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ⊆ 𝑉) |
102 | | f1imacnv 6859 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ {𝑥, 𝑦} ⊆ 𝑉) → (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦}) |
103 | 100, 101,
102 | syl2an 594 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦}) |
104 | 103 | eqcomd 2732 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → {𝑥, 𝑦} = (◡𝐹 “ (𝐹 “ {𝑥, 𝑦}))) |
105 | 104 | eleq1d 2811 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)) |
106 | 105 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (◡𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)) |
107 | 98, 106 | mpbird 256 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USPGraph ∧ 𝐻 ∈
USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → {𝑥, 𝑦} ∈ 𝐸) |
108 | 41, 107 | impbida 799 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷)) |
109 | | f1ofn 6844 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹 Fn 𝑉) |
110 | 109 | ad2antrl 726 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → 𝐹 Fn 𝑉) |
111 | 110 | anim1i 613 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
112 | | 3anass 1092 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
113 | 111, 112 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
114 | | fnimapr 6986 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹‘𝑥), (𝐹‘𝑦)}) |
115 | 113, 114 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹‘𝑥), (𝐹‘𝑦)}) |
116 | 115 | eleq1d 2811 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
117 | 108, 116 | bitrd 278 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
118 | 117 | ralrimivva 3191 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
119 | 7, 118 | jca 510 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷))) |
120 | 119 | ex 411 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
121 | 120 | adantr 479 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ (𝑒 ∈ 𝐸 ↦ (𝐹 “ 𝑒)):𝐸–1-1-onto→𝐷) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
122 | 6, 121 | sylbid 239 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |
123 | 122 | syldbl2 839 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷))) |
124 | 123 | ex 411 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)))) |