Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrimprop Structured version   Visualization version   GIF version

Theorem uspgrimprop 47757
Description: An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uspgrimprop ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝐷,𝑦   𝑦,𝐸   𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦

Proof of Theorem uspgrimprop
Dummy variables 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . . . . 6 𝑊 = (Vtx‘𝐻)
3 isusgrim.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 isusgrim.d . . . . . 6 𝐷 = (Edg‘𝐻)
51, 2, 3, 4isuspgrim0 47756 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
653expa 1118 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
7 simprl 770 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹:𝑉1-1-onto𝑊)
8 imaeq2 6085 . . . . . . . . . . . . . . . 16 (𝑒 = {𝑥, 𝑦} → (𝐹𝑒) = (𝐹 “ {𝑥, 𝑦}))
9 eqidd 2741 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑒𝐸 ↦ (𝐹𝑒)))
10 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → {𝑥, 𝑦} ∈ 𝐸)
11 f1ofun 6864 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑉1-1-onto𝑊 → Fun 𝐹)
12 zfpair2 5448 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ V
13 funimaexg 6664 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑥, 𝑦} ∈ V) → (𝐹 “ {𝑥, 𝑦}) ∈ V)
1411, 12, 13sylancl 585 . . . . . . . . . . . . . . . . 17 (𝐹:𝑉1-1-onto𝑊 → (𝐹 “ {𝑥, 𝑦}) ∈ V)
1514adantr 480 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ V)
168, 9, 10, 15fvmptd4 7053 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))
1716ex 412 . . . . . . . . . . . . . 14 (𝐹:𝑉1-1-onto𝑊 → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
1817adantr 480 . . . . . . . . . . . . 13 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
1918ad2antlr 726 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
2019imp 406 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))
21 f1of 6862 . . . . . . . . . . . . . . . 16 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷)
2221ad2antll 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷)
23 ax-1 6 . . . . . . . . . . . . . . . . 17 (∅ ∉ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
24 nnel 3062 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∉ 𝐷 ↔ ∅ ∈ 𝐷)
25 uspgruhgr 29219 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
26 uhgredgn0 29163 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ UHGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}))
2725, 26sylan 579 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻 ∈ USPGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}))
28 neldifsn 4817 . . . . . . . . . . . . . . . . . . . . . 22 ¬ ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅})
2928pm2.21i 119 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) → ∅ ∉ 𝐷)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ USPGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∉ 𝐷)
3130expcom 413 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ (Edg‘𝐻) → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3231, 4eleq2s 2862 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3324, 32sylbi 217 . . . . . . . . . . . . . . . . 17 (¬ ∅ ∉ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3423, 33pm2.61i 182 . . . . . . . . . . . . . . . 16 (𝐻 ∈ USPGraph → ∅ ∉ 𝐷)
3534ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ∅ ∉ 𝐷)
3622, 35jca 511 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷))
3736adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷))
38 feldmfvelcdm 7120 . . . . . . . . . . . . 13 (((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷))
3937, 38syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷))
4039biimpa 476 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷)
4120, 40eqeltrrd 2845 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷)
42 imaeq2 6085 . . . . . . . . . . . . 13 (𝑧 = (𝐹 “ {𝑥, 𝑦}) → (𝐹𝑧) = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
43 imaeq2 6085 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑦 → (𝐹𝑒) = (𝐹𝑦))
4443cbvmptv 5279 . . . . . . . . . . . . . . . . 17 (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑦𝐸 ↦ (𝐹𝑦))
45 f1oeq1 6850 . . . . . . . . . . . . . . . . 17 ((𝑒𝐸 ↦ (𝐹𝑒)) = (𝑦𝐸 ↦ (𝐹𝑦)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ↔ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷))
4644, 45mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ↔ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷))
47 imaeq2 6085 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
4847cbvmptv 5279 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑥𝐸 ↦ (𝐹𝑥))
49 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐹:𝑉1-1-onto𝑊)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐹:𝑉1-1-onto𝑊)
51 uspgruhgr 29219 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
52 uhgredgss 29166 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
53 difss2 4161 . . . . . . . . . . . . . . . . . . . . . 22 ((Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
5451, 52, 533syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USPGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
551pweqi 4638 . . . . . . . . . . . . . . . . . . . . 21 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
5654, 3, 553sstr4g 4054 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ USPGraph → 𝐸 ⊆ 𝒫 𝑉)
5756adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐸 ⊆ 𝒫 𝑉)
5857ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐸 ⊆ 𝒫 𝑉)
59 f1ofo 6869 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷 → (𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷)
6044rneqi 5962 . . . . . . . . . . . . . . . . . . . . . 22 ran (𝑒𝐸 ↦ (𝐹𝑒)) = ran (𝑦𝐸 ↦ (𝐹𝑦))
61 forn 6837 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷 → ran (𝑦𝐸 ↦ (𝐹𝑦)) = 𝐷)
6260, 61eqtrid 2792 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
6359, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
6463adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
65 uhgredgss 29166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ UHGraph → (Edg‘𝐻) ⊆ (𝒫 (Vtx‘𝐻) ∖ {∅}))
66 difss2 4161 . . . . . . . . . . . . . . . . . . . . . . 23 ((Edg‘𝐻) ⊆ (𝒫 (Vtx‘𝐻) ∖ {∅}) → (Edg‘𝐻) ⊆ 𝒫 (Vtx‘𝐻))
6725, 65, 663syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻 ∈ USPGraph → (Edg‘𝐻) ⊆ 𝒫 (Vtx‘𝐻))
682pweqi 4638 . . . . . . . . . . . . . . . . . . . . . 22 𝒫 𝑊 = 𝒫 (Vtx‘𝐻)
6967, 4, 683sstr4g 4054 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 ∈ USPGraph → 𝐷 ⊆ 𝒫 𝑊)
7069adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐷 ⊆ 𝒫 𝑊)
7170ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐷 ⊆ 𝒫 𝑊)
7264, 71eqsstrd 4047 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → ran (𝑒𝐸 ↦ (𝐹𝑒)) ⊆ 𝒫 𝑊)
731fvexi 6934 . . . . . . . . . . . . . . . . . . 19 𝑉 ∈ V
7473a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝑉 ∈ V)
7548, 50, 58, 72, 74mptcnfimad 8027 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
7675ex 412 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷(𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧))))
7746, 76sylbid 240 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷(𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧))))
7877impr 454 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
7978ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
80 f1ofo 6869 . . . . . . . . . . . . . . . . . 18 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷)
81 forn 6837 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
8281eqcomd 2746 . . . . . . . . . . . . . . . . . 18 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8483adantl 481 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → 𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8584ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → 𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8685eleq2d 2830 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒𝐸 ↦ (𝐹𝑒))))
8786biimpa 476 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)))
88 dff1o2 6867 . . . . . . . . . . . . . . . . 17 (𝐹:𝑉1-1-onto𝑊 ↔ (𝐹 Fn 𝑉 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑊))
8988simp2bi 1146 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝑊 → Fun 𝐹)
9089adantr 480 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → Fun 𝐹)
9190ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → Fun 𝐹)
92 funimaexg 6664 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V)
9391, 92sylan 579 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V)
9442, 79, 87, 93fvmptd4 7053 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
95 simplrr 777 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)
96 f1ocnvdm 7321 . . . . . . . . . . . . 13 (((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
9795, 96sylan 579 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
9894, 97eqeltrrd 2845 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
99 f1of1 6861 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
10099ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹:𝑉1-1𝑊)
101 prssi 4846 . . . . . . . . . . . . . . 15 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ⊆ 𝑉)
102 f1imacnv 6878 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1𝑊 ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦})
103100, 101, 102syl2an 595 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦})
104103eqcomd 2746 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → {𝑥, 𝑦} = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
105104eleq1d 2829 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸))
106105adantr 480 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸))
10798, 106mpbird 257 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → {𝑥, 𝑦} ∈ 𝐸)
10841, 107impbida 800 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷))
109 f1ofn 6863 . . . . . . . . . . . . . 14 (𝐹:𝑉1-1-onto𝑊𝐹 Fn 𝑉)
110109ad2antrl 727 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹 Fn 𝑉)
111110anim1i 614 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
112 3anass 1095 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
113111, 112sylibr 234 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉𝑥𝑉𝑦𝑉))
114 fnimapr 7005 . . . . . . . . . . 11 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
115113, 114syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
116115eleq1d 2829 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
117108, 116bitrd 279 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
118117ralrimivva 3208 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
1197, 118jca 511 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
120119ex 412 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
121120adantr 480 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
1226, 121sylbid 240 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
123122syldbl2 840 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
124123ex 412 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wnel 3052  wral 3067  Vcvv 3488  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082  UHGraphcuhgr 29091  USPGraphcuspgr 29183   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-uspgr 29185  df-grim 47748
This theorem is referenced by:  isuspgrim  47759
  Copyright terms: Public domain W3C validator