Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrimprop Structured version   Visualization version   GIF version

Theorem uspgrimprop 47452
Description: An isomorphism of simple pseudographs is a bijection between their vertices that preserves adjacency, i.e. there is an edge in one graph connecting one or two vertices iff there is an edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.)
Hypotheses
Ref Expression
isusgrim.v 𝑉 = (Vtx‘𝐺)
isusgrim.w 𝑊 = (Vtx‘𝐻)
isusgrim.e 𝐸 = (Edg‘𝐺)
isusgrim.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uspgrimprop ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐹   𝑥,𝐷,𝑦   𝑦,𝐸   𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦

Proof of Theorem uspgrimprop
Dummy variables 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isusgrim.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 isusgrim.w . . . . . 6 𝑊 = (Vtx‘𝐻)
3 isusgrim.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 isusgrim.d . . . . . 6 𝐷 = (Edg‘𝐻)
51, 2, 3, 4isuspgrim0 47451 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
653expa 1115 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)))
7 simprl 769 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹:𝑉1-1-onto𝑊)
8 imaeq2 6065 . . . . . . . . . . . . . . . 16 (𝑒 = {𝑥, 𝑦} → (𝐹𝑒) = (𝐹 “ {𝑥, 𝑦}))
9 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑒𝐸 ↦ (𝐹𝑒)))
10 simpr 483 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → {𝑥, 𝑦} ∈ 𝐸)
11 f1ofun 6845 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑉1-1-onto𝑊 → Fun 𝐹)
12 zfpair2 5434 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ V
13 funimaexg 6645 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑥, 𝑦} ∈ V) → (𝐹 “ {𝑥, 𝑦}) ∈ V)
1411, 12, 13sylancl 584 . . . . . . . . . . . . . . . . 17 (𝐹:𝑉1-1-onto𝑊 → (𝐹 “ {𝑥, 𝑦}) ∈ V)
1514adantr 479 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ V)
168, 9, 10, 15fvmptd4 7033 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto𝑊 ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))
1716ex 411 . . . . . . . . . . . . . 14 (𝐹:𝑉1-1-onto𝑊 → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
1817adantr 479 . . . . . . . . . . . . 13 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
1918ad2antlr 725 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦})))
2019imp 405 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) = (𝐹 “ {𝑥, 𝑦}))
21 f1of 6843 . . . . . . . . . . . . . . . 16 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷)
2221ad2antll 727 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷)
23 ax-1 6 . . . . . . . . . . . . . . . . 17 (∅ ∉ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
24 nnel 3046 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∉ 𝐷 ↔ ∅ ∈ 𝐷)
25 uspgruhgr 29120 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph)
26 uhgredgn0 29064 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐻 ∈ UHGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}))
2725, 26sylan 578 . . . . . . . . . . . . . . . . . . . . 21 ((𝐻 ∈ USPGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}))
28 neldifsn 4801 . . . . . . . . . . . . . . . . . . . . . 22 ¬ ∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅})
2928pm2.21i 119 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) → ∅ ∉ 𝐷)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ USPGraph ∧ ∅ ∈ (Edg‘𝐻)) → ∅ ∉ 𝐷)
3130expcom 412 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ (Edg‘𝐻) → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3231, 4eleq2s 2844 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3324, 32sylbi 216 . . . . . . . . . . . . . . . . 17 (¬ ∅ ∉ 𝐷 → (𝐻 ∈ USPGraph → ∅ ∉ 𝐷))
3423, 33pm2.61i 182 . . . . . . . . . . . . . . . 16 (𝐻 ∈ USPGraph → ∅ ∉ 𝐷)
3534ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ∅ ∉ 𝐷)
3622, 35jca 510 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷))
3736adantr 479 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷))
38 feldmfvelcdm 7100 . . . . . . . . . . . . 13 (((𝑒𝐸 ↦ (𝐹𝑒)):𝐸𝐷 ∧ ∅ ∉ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷))
3937, 38syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷))
4039biimpa 475 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → ((𝑒𝐸 ↦ (𝐹𝑒))‘{𝑥, 𝑦}) ∈ 𝐷)
4120, 40eqeltrrd 2827 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷)
42 imaeq2 6065 . . . . . . . . . . . . 13 (𝑧 = (𝐹 “ {𝑥, 𝑦}) → (𝐹𝑧) = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
43 imaeq2 6065 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑦 → (𝐹𝑒) = (𝐹𝑦))
4443cbvmptv 5266 . . . . . . . . . . . . . . . . 17 (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑦𝐸 ↦ (𝐹𝑦))
45 f1oeq1 6831 . . . . . . . . . . . . . . . . 17 ((𝑒𝐸 ↦ (𝐹𝑒)) = (𝑦𝐸 ↦ (𝐹𝑦)) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ↔ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷))
4644, 45mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ↔ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷))
47 imaeq2 6065 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
4847cbvmptv 5266 . . . . . . . . . . . . . . . . . 18 (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑥𝐸 ↦ (𝐹𝑥))
49 simpr 483 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → 𝐹:𝑉1-1-onto𝑊)
5049adantr 479 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐹:𝑉1-1-onto𝑊)
51 uspgruhgr 29120 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph)
52 uhgredgss 29067 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
53 difss2 4133 . . . . . . . . . . . . . . . . . . . . . 22 ((Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
5451, 52, 533syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USPGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
551pweqi 4623 . . . . . . . . . . . . . . . . . . . . 21 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
5654, 3, 553sstr4g 4025 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ USPGraph → 𝐸 ⊆ 𝒫 𝑉)
5756adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐸 ⊆ 𝒫 𝑉)
5857ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐸 ⊆ 𝒫 𝑉)
59 f1ofo 6850 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷 → (𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷)
6044rneqi 5943 . . . . . . . . . . . . . . . . . . . . . 22 ran (𝑒𝐸 ↦ (𝐹𝑒)) = ran (𝑦𝐸 ↦ (𝐹𝑦))
61 forn 6818 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷 → ran (𝑦𝐸 ↦ (𝐹𝑦)) = 𝐷)
6260, 61eqtrid 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
6359, 62syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
6463adantl 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
65 uhgredgss 29067 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐻 ∈ UHGraph → (Edg‘𝐻) ⊆ (𝒫 (Vtx‘𝐻) ∖ {∅}))
66 difss2 4133 . . . . . . . . . . . . . . . . . . . . . . 23 ((Edg‘𝐻) ⊆ (𝒫 (Vtx‘𝐻) ∖ {∅}) → (Edg‘𝐻) ⊆ 𝒫 (Vtx‘𝐻))
6725, 65, 663syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻 ∈ USPGraph → (Edg‘𝐻) ⊆ 𝒫 (Vtx‘𝐻))
682pweqi 4623 . . . . . . . . . . . . . . . . . . . . . 22 𝒫 𝑊 = 𝒫 (Vtx‘𝐻)
6967, 4, 683sstr4g 4025 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 ∈ USPGraph → 𝐷 ⊆ 𝒫 𝑊)
7069adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → 𝐷 ⊆ 𝒫 𝑊)
7170ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝐷 ⊆ 𝒫 𝑊)
7264, 71eqsstrd 4018 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → ran (𝑒𝐸 ↦ (𝐹𝑒)) ⊆ 𝒫 𝑊)
731fvexi 6915 . . . . . . . . . . . . . . . . . . 19 𝑉 ∈ V
7473a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → 𝑉 ∈ V)
7548, 50, 58, 72, 74mptcnfimad 8000 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) ∧ (𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
7675ex 411 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑦𝐸 ↦ (𝐹𝑦)):𝐸1-1-onto𝐷(𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧))))
7746, 76sylbid 239 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹:𝑉1-1-onto𝑊) → ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷(𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧))))
7877impr 453 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
7978ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝑒𝐸 ↦ (𝐹𝑒)) = (𝑧 ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)) ↦ (𝐹𝑧)))
80 f1ofo 6850 . . . . . . . . . . . . . . . . . 18 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷)
81 forn 6818 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷 → ran (𝑒𝐸 ↦ (𝐹𝑒)) = 𝐷)
8281eqcomd 2732 . . . . . . . . . . . . . . . . . 18 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸onto𝐷𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 ((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8483adantl 480 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → 𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8584ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → 𝐷 = ran (𝑒𝐸 ↦ (𝐹𝑒)))
8685eleq2d 2812 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒𝐸 ↦ (𝐹𝑒))))
8786biimpa 475 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ {𝑥, 𝑦}) ∈ ran (𝑒𝐸 ↦ (𝐹𝑒)))
88 dff1o2 6848 . . . . . . . . . . . . . . . . 17 (𝐹:𝑉1-1-onto𝑊 ↔ (𝐹 Fn 𝑉 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝑊))
8988simp2bi 1143 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝑊 → Fun 𝐹)
9089adantr 479 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → Fun 𝐹)
9190ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → Fun 𝐹)
92 funimaexg 6645 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V)
9391, 92sylan 578 . . . . . . . . . . . . 13 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ V)
9442, 79, 87, 93fvmptd4 7033 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
95 simplrr 776 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)
96 f1ocnvdm 7299 . . . . . . . . . . . . 13 (((𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷 ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
9795, 96sylan 578 . . . . . . . . . . . 12 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ((𝑒𝐸 ↦ (𝐹𝑒))‘(𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
9894, 97eqeltrrd 2827 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸)
99 f1of1 6842 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
10099ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹:𝑉1-1𝑊)
101 prssi 4830 . . . . . . . . . . . . . . 15 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ⊆ 𝑉)
102 f1imacnv 6859 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1𝑊 ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦})
103100, 101, 102syl2an 594 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 “ (𝐹 “ {𝑥, 𝑦})) = {𝑥, 𝑦})
104103eqcomd 2732 . . . . . . . . . . . . 13 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → {𝑥, 𝑦} = (𝐹 “ (𝐹 “ {𝑥, 𝑦})))
105104eleq1d 2811 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸))
106105adantr 479 . . . . . . . . . . 11 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ (𝐹 “ {𝑥, 𝑦})) ∈ 𝐸))
10798, 106mpbird 256 . . . . . . . . . 10 (((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷) → {𝑥, 𝑦} ∈ 𝐸)
10841, 107impbida 799 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷))
109 f1ofn 6844 . . . . . . . . . . . . . 14 (𝐹:𝑉1-1-onto𝑊𝐹 Fn 𝑉)
110109ad2antrl 726 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → 𝐹 Fn 𝑉)
111110anim1i 613 . . . . . . . . . . . 12 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
112 3anass 1092 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
113111, 112sylibr 233 . . . . . . . . . . 11 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉𝑥𝑉𝑦𝑉))
114 fnimapr 6986 . . . . . . . . . . 11 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
115113, 114syl 17 . . . . . . . . . 10 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
116115eleq1d 2811 . . . . . . . . 9 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
117108, 116bitrd 278 . . . . . . . 8 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
118117ralrimivva 3191 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
1197, 118jca 510 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
120119ex 411 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
121120adantr 479 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ((𝐹:𝑉1-1-onto𝑊 ∧ (𝑒𝐸 ↦ (𝐹𝑒)):𝐸1-1-onto𝐷) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
1226, 121sylbid 239 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
123122syldbl2 839 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
124123ex 411 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wnel 3036  wral 3051  Vcvv 3462  cdif 3944  wss 3947  c0 4325  𝒫 cpw 4607  {csn 4633  {cpr 4635  cmpt 5236  ccnv 5681  ran crn 5683  cima 5685  Fun wfun 6548   Fn wfn 6549  wf 6550  1-1wf1 6551  ontowfo 6552  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  Vtxcvtx 28932  Edgcedg 28983  UHGraphcuhgr 28992  USPGraphcuspgr 29084   GraphIso cgrim 47440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-edg 28984  df-uhgr 28994  df-upgr 29018  df-uspgr 29086  df-grim 47443
This theorem is referenced by:  isuspgrim  47454
  Copyright terms: Public domain W3C validator