![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpredimg | Structured version Visualization version GIF version |
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elpredimg | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg 6312 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
2 | simpr 484 | . . 3 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) → 𝑌𝑅𝑋) | |
3 | 1, 2 | biimtrdi 252 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)) |
4 | 3 | syldbl2 840 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 class class class wbr 5142 Predcpred 6298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 |
This theorem is referenced by: elpredim 6315 |
Copyright terms: Public domain | W3C validator |