MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredimg Structured version   Visualization version   GIF version

Theorem elpredimg 6338
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredimg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem elpredimg
StepHypRef Expression
1 elpredgg 6336 . . 3 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 simpr 484 . . 3 ((𝑌𝐴𝑌𝑅𝑋) → 𝑌𝑅𝑋)
31, 2biimtrdi 253 . 2 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
43syldbl2 841 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106   class class class wbr 5148  Predcpred 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323
This theorem is referenced by:  elpredim  6339  predtrss  6345
  Copyright terms: Public domain W3C validator