MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredimg Structured version   Visualization version   GIF version

Theorem elpredimg 6217
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredimg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem elpredimg
StepHypRef Expression
1 elpredgg 6215 . . 3 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 simpr 485 . . 3 ((𝑌𝐴𝑌𝑅𝑋) → 𝑌𝑅𝑋)
31, 2syl6bi 252 . 2 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
43syldbl2 838 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106   class class class wbr 5074  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  elpredim  6218
  Copyright terms: Public domain W3C validator