MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredimg Structured version   Visualization version   GIF version

Theorem elpredimg 6289
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredimg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem elpredimg
StepHypRef Expression
1 elpredgg 6287 . . 3 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 simpr 484 . . 3 ((𝑌𝐴𝑌𝑅𝑋) → 𝑌𝑅𝑋)
31, 2biimtrdi 253 . 2 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
43syldbl2 841 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5107  Predcpred 6273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274
This theorem is referenced by:  elpredim  6290  predtrss  6295
  Copyright terms: Public domain W3C validator