MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredimg Structured version   Visualization version   GIF version

Theorem elpredimg 6263
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredimg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem elpredimg
StepHypRef Expression
1 elpredgg 6261 . . 3 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 simpr 484 . . 3 ((𝑌𝐴𝑌𝑅𝑋) → 𝑌𝑅𝑋)
31, 2biimtrdi 253 . 2 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
43syldbl2 841 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111   class class class wbr 5091  Predcpred 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248
This theorem is referenced by:  elpredim  6264  predtrss  6269
  Copyright terms: Public domain W3C validator