Step | Hyp | Ref
| Expression |
1 | | rprmdvdspow.1 |
. 2
⊢ (𝜑 → 𝑄 ∥ (𝑁 ↑ 𝑋)) |
2 | | rprmdvdspow.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
3 | | oveq1 7437 |
. . . . . 6
⊢ (𝑖 = 0 → (𝑖 ↑ 𝑋) = (0 ↑ 𝑋)) |
4 | 3 | breq2d 5159 |
. . . . 5
⊢ (𝑖 = 0 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (0 ↑ 𝑋))) |
5 | 4 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 0 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (0 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
6 | | oveq1 7437 |
. . . . . 6
⊢ (𝑖 = 𝑛 → (𝑖 ↑ 𝑋) = (𝑛 ↑ 𝑋)) |
7 | 6 | breq2d 5159 |
. . . . 5
⊢ (𝑖 = 𝑛 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (𝑛 ↑ 𝑋))) |
8 | 7 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 𝑛 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
9 | | oveq1 7437 |
. . . . . 6
⊢ (𝑖 = (𝑛 + 1) → (𝑖 ↑ 𝑋) = ((𝑛 + 1) ↑ 𝑋)) |
10 | 9 | breq2d 5159 |
. . . . 5
⊢ (𝑖 = (𝑛 + 1) → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋))) |
11 | 10 | imbi1d 341 |
. . . 4
⊢ (𝑖 = (𝑛 + 1) → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
12 | | oveq1 7437 |
. . . . . 6
⊢ (𝑖 = 𝑁 → (𝑖 ↑ 𝑋) = (𝑁 ↑ 𝑋)) |
13 | 12 | breq2d 5159 |
. . . . 5
⊢ (𝑖 = 𝑁 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (𝑁 ↑ 𝑋))) |
14 | 13 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 𝑁 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
15 | | rprmdvdspow.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
16 | | rprmdvdspow.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
17 | | rprmdvdspow.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
18 | 16, 17 | mgpbas 20157 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
19 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
20 | 16, 19 | ringidval 20200 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (0g‘𝑀) |
21 | | rprmdvdspow.o |
. . . . . . . . . 10
⊢ ↑ =
(.g‘𝑀) |
22 | 18, 20, 21 | mulg0 19104 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
23 | 15, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
24 | 23 | breq2d 5159 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∥ (0 ↑ 𝑋) ↔ 𝑄 ∥
(1r‘𝑅))) |
25 | 24 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → 𝑄 ∥
(1r‘𝑅)) |
26 | | rprmdvdspow.d |
. . . . . . . 8
⊢ ∥ =
(∥r‘𝑅) |
27 | | rprmdvdspow.p |
. . . . . . . 8
⊢ 𝑃 = (RPrime‘𝑅) |
28 | | rprmdvdspow.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
29 | | rprmdvdspow.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
30 | 19, 26, 27, 28, 29 | rprmndvdsr1 33531 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑄 ∥
(1r‘𝑅)) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → ¬ 𝑄 ∥
(1r‘𝑅)) |
32 | 25, 31 | pm2.21dd 195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
33 | 32 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑄 ∥ (0 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
34 | | simpllr 776 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ (𝑛 ↑ 𝑋)) → (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
35 | 34 | syldbl2 841 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ (𝑛 ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
36 | | simpr 484 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ 𝑋) → 𝑄 ∥ 𝑋) |
37 | | eqid 2734 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
38 | 28 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑅 ∈ CRing) |
39 | 29 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∈ 𝑃) |
40 | 28 | crngringd 20263 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
41 | 16 | ringmgp 20256 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
43 | 42 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑀 ∈ Mnd) |
44 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑛 ∈ ℕ0) |
45 | 15 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑋 ∈ 𝐵) |
46 | 18, 21, 43, 44, 45 | mulgnn0cld 19125 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → (𝑛 ↑ 𝑋) ∈ 𝐵) |
47 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd) |
48 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
49 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
50 | 16, 37 | mgpplusg 20155 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘𝑀) |
51 | 18, 21, 50 | mulgnn0p1 19115 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑛 + 1) ↑ 𝑋) = ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
52 | 47, 48, 49, 51 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ↑ 𝑋) = ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
53 | 52 | breq2d 5159 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) ↔ 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋))) |
54 | 53 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
55 | 54 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
56 | 17, 27, 26, 37, 38, 39, 46, 45, 55 | rprmdvds 33526 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → (𝑄 ∥ (𝑛 ↑ 𝑋) ∨ 𝑄 ∥ 𝑋)) |
57 | 35, 36, 56 | mpjaodan 960 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
58 | 57 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) → (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
59 | 5, 8, 11, 14, 33, 58 | nn0indd 12712 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
60 | 2, 59 | mpdan 687 |
. 2
⊢ (𝜑 → (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
61 | 1, 60 | mpd 15 |
1
⊢ (𝜑 → 𝑄 ∥ 𝑋) |