Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdspow Structured version   Visualization version   GIF version

Theorem rprmdvdspow 33561
Description: If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdspow.b 𝐵 = (Base‘𝑅)
rprmdvdspow.p 𝑃 = (RPrime‘𝑅)
rprmdvdspow.d = (∥r𝑅)
rprmdvdspow.m 𝑀 = (mulGrp‘𝑅)
rprmdvdspow.o = (.g𝑀)
rprmdvdspow.r (𝜑𝑅 ∈ CRing)
rprmdvdspow.x (𝜑𝑋𝐵)
rprmdvdspow.q (𝜑𝑄𝑃)
rprmdvdspow.n (𝜑𝑁 ∈ ℕ0)
rprmdvdspow.1 (𝜑𝑄 (𝑁 𝑋))
Assertion
Ref Expression
rprmdvdspow (𝜑𝑄 𝑋)

Proof of Theorem rprmdvdspow
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdspow.1 . 2 (𝜑𝑄 (𝑁 𝑋))
2 rprmdvdspow.n . . 3 (𝜑𝑁 ∈ ℕ0)
3 oveq1 7438 . . . . . 6 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
43breq2d 5155 . . . . 5 (𝑖 = 0 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (0 𝑋)))
54imbi1d 341 . . . 4 (𝑖 = 0 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (0 𝑋) → 𝑄 𝑋)))
6 oveq1 7438 . . . . . 6 (𝑖 = 𝑛 → (𝑖 𝑋) = (𝑛 𝑋))
76breq2d 5155 . . . . 5 (𝑖 = 𝑛 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑛 𝑋)))
87imbi1d 341 . . . 4 (𝑖 = 𝑛 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)))
9 oveq1 7438 . . . . . 6 (𝑖 = (𝑛 + 1) → (𝑖 𝑋) = ((𝑛 + 1) 𝑋))
109breq2d 5155 . . . . 5 (𝑖 = (𝑛 + 1) → (𝑄 (𝑖 𝑋) ↔ 𝑄 ((𝑛 + 1) 𝑋)))
1110imbi1d 341 . . . 4 (𝑖 = (𝑛 + 1) → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋)))
12 oveq1 7438 . . . . . 6 (𝑖 = 𝑁 → (𝑖 𝑋) = (𝑁 𝑋))
1312breq2d 5155 . . . . 5 (𝑖 = 𝑁 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑁 𝑋)))
1413imbi1d 341 . . . 4 (𝑖 = 𝑁 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑁 𝑋) → 𝑄 𝑋)))
15 rprmdvdspow.x . . . . . . . . 9 (𝜑𝑋𝐵)
16 rprmdvdspow.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
17 rprmdvdspow.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1816, 17mgpbas 20142 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
19 eqid 2737 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
2016, 19ringidval 20180 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
21 rprmdvdspow.o . . . . . . . . . 10 = (.g𝑀)
2218, 20, 21mulg0 19092 . . . . . . . . 9 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2315, 22syl 17 . . . . . . . 8 (𝜑 → (0 𝑋) = (1r𝑅))
2423breq2d 5155 . . . . . . 7 (𝜑 → (𝑄 (0 𝑋) ↔ 𝑄 (1r𝑅)))
2524biimpa 476 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → 𝑄 (1r𝑅))
26 rprmdvdspow.d . . . . . . . 8 = (∥r𝑅)
27 rprmdvdspow.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
28 rprmdvdspow.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
29 rprmdvdspow.q . . . . . . . 8 (𝜑𝑄𝑃)
3019, 26, 27, 28, 29rprmndvdsr1 33552 . . . . . . 7 (𝜑 → ¬ 𝑄 (1r𝑅))
3130adantr 480 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → ¬ 𝑄 (1r𝑅))
3225, 31pm2.21dd 195 . . . . 5 ((𝜑𝑄 (0 𝑋)) → 𝑄 𝑋)
3332ex 412 . . . 4 (𝜑 → (𝑄 (0 𝑋) → 𝑄 𝑋))
34 simpllr 776 . . . . . . 7 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → (𝑄 (𝑛 𝑋) → 𝑄 𝑋))
3534syldbl2 842 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → 𝑄 𝑋)
36 simpr 484 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 𝑋) → 𝑄 𝑋)
37 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
3828ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑅 ∈ CRing)
3929ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄𝑃)
4028crngringd 20243 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
4116ringmgp 20236 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
4240, 41syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
4342ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑀 ∈ Mnd)
44 simpllr 776 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑛 ∈ ℕ0)
4515ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑋𝐵)
4618, 21, 43, 44, 45mulgnn0cld 19113 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑛 𝑋) ∈ 𝐵)
4742adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4915adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5016, 37mgpplusg 20141 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5118, 21, 50mulgnn0p1 19103 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5352breq2d 5155 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑄 ((𝑛 + 1) 𝑋) ↔ 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋)))
5453biimpa 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5554adantlr 715 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5617, 27, 26, 37, 38, 39, 46, 45, 55rprmdvds 33547 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑄 (𝑛 𝑋) ∨ 𝑄 𝑋))
5735, 36, 56mpjaodan 961 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 𝑋)
5857ex 412 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) → (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋))
595, 8, 11, 14, 33, 58nn0indd 12715 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
602, 59mpdan 687 . 2 (𝜑 → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
611, 60mpd 15 1 (𝜑𝑄 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  Basecbs 17247  .rcmulr 17298  Mndcmnd 18747  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  rcdsr 20354  RPrimecrpm 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mulg 19086  df-cmn 19800  df-mgp 20138  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-rprm 20433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator