Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdspow Structured version   Visualization version   GIF version

Theorem rprmdvdspow 33548
Description: If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdspow.b 𝐵 = (Base‘𝑅)
rprmdvdspow.p 𝑃 = (RPrime‘𝑅)
rprmdvdspow.d = (∥r𝑅)
rprmdvdspow.m 𝑀 = (mulGrp‘𝑅)
rprmdvdspow.o = (.g𝑀)
rprmdvdspow.r (𝜑𝑅 ∈ CRing)
rprmdvdspow.x (𝜑𝑋𝐵)
rprmdvdspow.q (𝜑𝑄𝑃)
rprmdvdspow.n (𝜑𝑁 ∈ ℕ0)
rprmdvdspow.1 (𝜑𝑄 (𝑁 𝑋))
Assertion
Ref Expression
rprmdvdspow (𝜑𝑄 𝑋)

Proof of Theorem rprmdvdspow
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdspow.1 . 2 (𝜑𝑄 (𝑁 𝑋))
2 rprmdvdspow.n . . 3 (𝜑𝑁 ∈ ℕ0)
3 oveq1 7412 . . . . . 6 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
43breq2d 5131 . . . . 5 (𝑖 = 0 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (0 𝑋)))
54imbi1d 341 . . . 4 (𝑖 = 0 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (0 𝑋) → 𝑄 𝑋)))
6 oveq1 7412 . . . . . 6 (𝑖 = 𝑛 → (𝑖 𝑋) = (𝑛 𝑋))
76breq2d 5131 . . . . 5 (𝑖 = 𝑛 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑛 𝑋)))
87imbi1d 341 . . . 4 (𝑖 = 𝑛 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)))
9 oveq1 7412 . . . . . 6 (𝑖 = (𝑛 + 1) → (𝑖 𝑋) = ((𝑛 + 1) 𝑋))
109breq2d 5131 . . . . 5 (𝑖 = (𝑛 + 1) → (𝑄 (𝑖 𝑋) ↔ 𝑄 ((𝑛 + 1) 𝑋)))
1110imbi1d 341 . . . 4 (𝑖 = (𝑛 + 1) → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋)))
12 oveq1 7412 . . . . . 6 (𝑖 = 𝑁 → (𝑖 𝑋) = (𝑁 𝑋))
1312breq2d 5131 . . . . 5 (𝑖 = 𝑁 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑁 𝑋)))
1413imbi1d 341 . . . 4 (𝑖 = 𝑁 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑁 𝑋) → 𝑄 𝑋)))
15 rprmdvdspow.x . . . . . . . . 9 (𝜑𝑋𝐵)
16 rprmdvdspow.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
17 rprmdvdspow.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1816, 17mgpbas 20105 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
19 eqid 2735 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
2016, 19ringidval 20143 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
21 rprmdvdspow.o . . . . . . . . . 10 = (.g𝑀)
2218, 20, 21mulg0 19057 . . . . . . . . 9 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2315, 22syl 17 . . . . . . . 8 (𝜑 → (0 𝑋) = (1r𝑅))
2423breq2d 5131 . . . . . . 7 (𝜑 → (𝑄 (0 𝑋) ↔ 𝑄 (1r𝑅)))
2524biimpa 476 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → 𝑄 (1r𝑅))
26 rprmdvdspow.d . . . . . . . 8 = (∥r𝑅)
27 rprmdvdspow.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
28 rprmdvdspow.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
29 rprmdvdspow.q . . . . . . . 8 (𝜑𝑄𝑃)
3019, 26, 27, 28, 29rprmndvdsr1 33539 . . . . . . 7 (𝜑 → ¬ 𝑄 (1r𝑅))
3130adantr 480 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → ¬ 𝑄 (1r𝑅))
3225, 31pm2.21dd 195 . . . . 5 ((𝜑𝑄 (0 𝑋)) → 𝑄 𝑋)
3332ex 412 . . . 4 (𝜑 → (𝑄 (0 𝑋) → 𝑄 𝑋))
34 simpllr 775 . . . . . . 7 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → (𝑄 (𝑛 𝑋) → 𝑄 𝑋))
3534syldbl2 841 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → 𝑄 𝑋)
36 simpr 484 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 𝑋) → 𝑄 𝑋)
37 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
3828ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑅 ∈ CRing)
3929ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄𝑃)
4028crngringd 20206 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
4116ringmgp 20199 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
4240, 41syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
4342ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑀 ∈ Mnd)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑛 ∈ ℕ0)
4515ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑋𝐵)
4618, 21, 43, 44, 45mulgnn0cld 19078 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑛 𝑋) ∈ 𝐵)
4742adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4915adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5016, 37mgpplusg 20104 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5118, 21, 50mulgnn0p1 19068 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5352breq2d 5131 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑄 ((𝑛 + 1) 𝑋) ↔ 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋)))
5453biimpa 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5554adantlr 715 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5617, 27, 26, 37, 38, 39, 46, 45, 55rprmdvds 33534 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑄 (𝑛 𝑋) ∨ 𝑄 𝑋))
5735, 36, 56mpjaodan 960 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 𝑋)
5857ex 412 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) → (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋))
595, 8, 11, 14, 33, 58nn0indd 12690 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
602, 59mpdan 687 . 2 (𝜑 → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
611, 60mpd 15 1 (𝜑𝑄 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  0cn0 12501  Basecbs 17228  .rcmulr 17272  Mndcmnd 18712  .gcmg 19050  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194  rcdsr 20314  RPrimecrpm 20392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mulg 19051  df-cmn 19763  df-mgp 20101  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-rprm 20393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator