Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdspow Structured version   Visualization version   GIF version

Theorem rprmdvdspow 33540
Description: If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdspow.b 𝐵 = (Base‘𝑅)
rprmdvdspow.p 𝑃 = (RPrime‘𝑅)
rprmdvdspow.d = (∥r𝑅)
rprmdvdspow.m 𝑀 = (mulGrp‘𝑅)
rprmdvdspow.o = (.g𝑀)
rprmdvdspow.r (𝜑𝑅 ∈ CRing)
rprmdvdspow.x (𝜑𝑋𝐵)
rprmdvdspow.q (𝜑𝑄𝑃)
rprmdvdspow.n (𝜑𝑁 ∈ ℕ0)
rprmdvdspow.1 (𝜑𝑄 (𝑁 𝑋))
Assertion
Ref Expression
rprmdvdspow (𝜑𝑄 𝑋)

Proof of Theorem rprmdvdspow
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdspow.1 . 2 (𝜑𝑄 (𝑁 𝑋))
2 rprmdvdspow.n . . 3 (𝜑𝑁 ∈ ℕ0)
3 oveq1 7437 . . . . . 6 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
43breq2d 5159 . . . . 5 (𝑖 = 0 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (0 𝑋)))
54imbi1d 341 . . . 4 (𝑖 = 0 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (0 𝑋) → 𝑄 𝑋)))
6 oveq1 7437 . . . . . 6 (𝑖 = 𝑛 → (𝑖 𝑋) = (𝑛 𝑋))
76breq2d 5159 . . . . 5 (𝑖 = 𝑛 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑛 𝑋)))
87imbi1d 341 . . . 4 (𝑖 = 𝑛 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)))
9 oveq1 7437 . . . . . 6 (𝑖 = (𝑛 + 1) → (𝑖 𝑋) = ((𝑛 + 1) 𝑋))
109breq2d 5159 . . . . 5 (𝑖 = (𝑛 + 1) → (𝑄 (𝑖 𝑋) ↔ 𝑄 ((𝑛 + 1) 𝑋)))
1110imbi1d 341 . . . 4 (𝑖 = (𝑛 + 1) → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋)))
12 oveq1 7437 . . . . . 6 (𝑖 = 𝑁 → (𝑖 𝑋) = (𝑁 𝑋))
1312breq2d 5159 . . . . 5 (𝑖 = 𝑁 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑁 𝑋)))
1413imbi1d 341 . . . 4 (𝑖 = 𝑁 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑁 𝑋) → 𝑄 𝑋)))
15 rprmdvdspow.x . . . . . . . . 9 (𝜑𝑋𝐵)
16 rprmdvdspow.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
17 rprmdvdspow.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1816, 17mgpbas 20157 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
19 eqid 2734 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
2016, 19ringidval 20200 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
21 rprmdvdspow.o . . . . . . . . . 10 = (.g𝑀)
2218, 20, 21mulg0 19104 . . . . . . . . 9 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2315, 22syl 17 . . . . . . . 8 (𝜑 → (0 𝑋) = (1r𝑅))
2423breq2d 5159 . . . . . . 7 (𝜑 → (𝑄 (0 𝑋) ↔ 𝑄 (1r𝑅)))
2524biimpa 476 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → 𝑄 (1r𝑅))
26 rprmdvdspow.d . . . . . . . 8 = (∥r𝑅)
27 rprmdvdspow.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
28 rprmdvdspow.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
29 rprmdvdspow.q . . . . . . . 8 (𝜑𝑄𝑃)
3019, 26, 27, 28, 29rprmndvdsr1 33531 . . . . . . 7 (𝜑 → ¬ 𝑄 (1r𝑅))
3130adantr 480 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → ¬ 𝑄 (1r𝑅))
3225, 31pm2.21dd 195 . . . . 5 ((𝜑𝑄 (0 𝑋)) → 𝑄 𝑋)
3332ex 412 . . . 4 (𝜑 → (𝑄 (0 𝑋) → 𝑄 𝑋))
34 simpllr 776 . . . . . . 7 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → (𝑄 (𝑛 𝑋) → 𝑄 𝑋))
3534syldbl2 841 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → 𝑄 𝑋)
36 simpr 484 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 𝑋) → 𝑄 𝑋)
37 eqid 2734 . . . . . . 7 (.r𝑅) = (.r𝑅)
3828ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑅 ∈ CRing)
3929ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄𝑃)
4028crngringd 20263 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
4116ringmgp 20256 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
4240, 41syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
4342ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑀 ∈ Mnd)
44 simpllr 776 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑛 ∈ ℕ0)
4515ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑋𝐵)
4618, 21, 43, 44, 45mulgnn0cld 19125 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑛 𝑋) ∈ 𝐵)
4742adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4915adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5016, 37mgpplusg 20155 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5118, 21, 50mulgnn0p1 19115 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5247, 48, 49, 51syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5352breq2d 5159 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑄 ((𝑛 + 1) 𝑋) ↔ 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋)))
5453biimpa 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5554adantlr 715 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5617, 27, 26, 37, 38, 39, 46, 45, 55rprmdvds 33526 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑄 (𝑛 𝑋) ∨ 𝑄 𝑋))
5735, 36, 56mpjaodan 960 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 𝑋)
5857ex 412 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) → (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋))
595, 8, 11, 14, 33, 58nn0indd 12712 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
602, 59mpdan 687 . 2 (𝜑 → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
611, 60mpd 15 1 (𝜑𝑄 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  0cn0 12523  Basecbs 17244  .rcmulr 17298  Mndcmnd 18759  .gcmg 19097  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250  CRingccrg 20251  rcdsr 20370  RPrimecrpm 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mulg 19098  df-cmn 19814  df-mgp 20152  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-rprm 20449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator