| Step | Hyp | Ref
| Expression |
| 1 | | rprmdvdspow.1 |
. 2
⊢ (𝜑 → 𝑄 ∥ (𝑁 ↑ 𝑋)) |
| 2 | | rprmdvdspow.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | oveq1 7438 |
. . . . . 6
⊢ (𝑖 = 0 → (𝑖 ↑ 𝑋) = (0 ↑ 𝑋)) |
| 4 | 3 | breq2d 5155 |
. . . . 5
⊢ (𝑖 = 0 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (0 ↑ 𝑋))) |
| 5 | 4 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 0 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (0 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
| 6 | | oveq1 7438 |
. . . . . 6
⊢ (𝑖 = 𝑛 → (𝑖 ↑ 𝑋) = (𝑛 ↑ 𝑋)) |
| 7 | 6 | breq2d 5155 |
. . . . 5
⊢ (𝑖 = 𝑛 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (𝑛 ↑ 𝑋))) |
| 8 | 7 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 𝑛 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
| 9 | | oveq1 7438 |
. . . . . 6
⊢ (𝑖 = (𝑛 + 1) → (𝑖 ↑ 𝑋) = ((𝑛 + 1) ↑ 𝑋)) |
| 10 | 9 | breq2d 5155 |
. . . . 5
⊢ (𝑖 = (𝑛 + 1) → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋))) |
| 11 | 10 | imbi1d 341 |
. . . 4
⊢ (𝑖 = (𝑛 + 1) → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
| 12 | | oveq1 7438 |
. . . . . 6
⊢ (𝑖 = 𝑁 → (𝑖 ↑ 𝑋) = (𝑁 ↑ 𝑋)) |
| 13 | 12 | breq2d 5155 |
. . . . 5
⊢ (𝑖 = 𝑁 → (𝑄 ∥ (𝑖 ↑ 𝑋) ↔ 𝑄 ∥ (𝑁 ↑ 𝑋))) |
| 14 | 13 | imbi1d 341 |
. . . 4
⊢ (𝑖 = 𝑁 → ((𝑄 ∥ (𝑖 ↑ 𝑋) → 𝑄 ∥ 𝑋) ↔ (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋))) |
| 15 | | rprmdvdspow.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 16 | | rprmdvdspow.m |
. . . . . . . . . . 11
⊢ 𝑀 = (mulGrp‘𝑅) |
| 17 | | rprmdvdspow.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 18 | 16, 17 | mgpbas 20142 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
| 19 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 20 | 16, 19 | ringidval 20180 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (0g‘𝑀) |
| 21 | | rprmdvdspow.o |
. . . . . . . . . 10
⊢ ↑ =
(.g‘𝑀) |
| 22 | 18, 20, 21 | mulg0 19092 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 23 | 15, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 24 | 23 | breq2d 5155 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∥ (0 ↑ 𝑋) ↔ 𝑄 ∥
(1r‘𝑅))) |
| 25 | 24 | biimpa 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → 𝑄 ∥
(1r‘𝑅)) |
| 26 | | rprmdvdspow.d |
. . . . . . . 8
⊢ ∥ =
(∥r‘𝑅) |
| 27 | | rprmdvdspow.p |
. . . . . . . 8
⊢ 𝑃 = (RPrime‘𝑅) |
| 28 | | rprmdvdspow.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 29 | | rprmdvdspow.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| 30 | 19, 26, 27, 28, 29 | rprmndvdsr1 33552 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑄 ∥
(1r‘𝑅)) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → ¬ 𝑄 ∥
(1r‘𝑅)) |
| 32 | 25, 31 | pm2.21dd 195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∥ (0 ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
| 33 | 32 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑄 ∥ (0 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
| 34 | | simpllr 776 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ (𝑛 ↑ 𝑋)) → (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
| 35 | 34 | syldbl2 842 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ (𝑛 ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
| 36 | | simpr 484 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ0)
∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) ∧ 𝑄 ∥ 𝑋) → 𝑄 ∥ 𝑋) |
| 37 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 38 | 28 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑅 ∈ CRing) |
| 39 | 29 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∈ 𝑃) |
| 40 | 28 | crngringd 20243 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 41 | 16 | ringmgp 20236 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 43 | 42 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑀 ∈ Mnd) |
| 44 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑛 ∈ ℕ0) |
| 45 | 15 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑋 ∈ 𝐵) |
| 46 | 18, 21, 43, 44, 45 | mulgnn0cld 19113 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → (𝑛 ↑ 𝑋) ∈ 𝐵) |
| 47 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd) |
| 48 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 49 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
| 50 | 16, 37 | mgpplusg 20141 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘𝑀) |
| 51 | 18, 21, 50 | mulgnn0p1 19103 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑛 + 1) ↑ 𝑋) = ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 52 | 47, 48, 49, 51 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ↑ 𝑋) = ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 53 | 52 | breq2d 5155 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) ↔ 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋))) |
| 54 | 53 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 55 | 54 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ ((𝑛 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 56 | 17, 27, 26, 37, 38, 39, 46, 45, 55 | rprmdvds 33547 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → (𝑄 ∥ (𝑛 ↑ 𝑋) ∨ 𝑄 ∥ 𝑋)) |
| 57 | 35, 36, 56 | mpjaodan 961 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) ∧ 𝑄 ∥ ((𝑛 + 1) ↑ 𝑋)) → 𝑄 ∥ 𝑋) |
| 58 | 57 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑄 ∥ (𝑛 ↑ 𝑋) → 𝑄 ∥ 𝑋)) → (𝑄 ∥ ((𝑛 + 1) ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
| 59 | 5, 8, 11, 14, 33, 58 | nn0indd 12715 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
| 60 | 2, 59 | mpdan 687 |
. 2
⊢ (𝜑 → (𝑄 ∥ (𝑁 ↑ 𝑋) → 𝑄 ∥ 𝑋)) |
| 61 | 1, 60 | mpd 15 |
1
⊢ (𝜑 → 𝑄 ∥ 𝑋) |