Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvdspow Structured version   Visualization version   GIF version

Theorem rprmdvdspow 33477
Description: If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvdspow.b 𝐵 = (Base‘𝑅)
rprmdvdspow.p 𝑃 = (RPrime‘𝑅)
rprmdvdspow.d = (∥r𝑅)
rprmdvdspow.m 𝑀 = (mulGrp‘𝑅)
rprmdvdspow.o = (.g𝑀)
rprmdvdspow.r (𝜑𝑅 ∈ CRing)
rprmdvdspow.x (𝜑𝑋𝐵)
rprmdvdspow.q (𝜑𝑄𝑃)
rprmdvdspow.n (𝜑𝑁 ∈ ℕ0)
rprmdvdspow.1 (𝜑𝑄 (𝑁 𝑋))
Assertion
Ref Expression
rprmdvdspow (𝜑𝑄 𝑋)

Proof of Theorem rprmdvdspow
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvdspow.1 . 2 (𝜑𝑄 (𝑁 𝑋))
2 rprmdvdspow.n . . 3 (𝜑𝑁 ∈ ℕ0)
3 oveq1 7376 . . . . . 6 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
43breq2d 5114 . . . . 5 (𝑖 = 0 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (0 𝑋)))
54imbi1d 341 . . . 4 (𝑖 = 0 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (0 𝑋) → 𝑄 𝑋)))
6 oveq1 7376 . . . . . 6 (𝑖 = 𝑛 → (𝑖 𝑋) = (𝑛 𝑋))
76breq2d 5114 . . . . 5 (𝑖 = 𝑛 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑛 𝑋)))
87imbi1d 341 . . . 4 (𝑖 = 𝑛 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)))
9 oveq1 7376 . . . . . 6 (𝑖 = (𝑛 + 1) → (𝑖 𝑋) = ((𝑛 + 1) 𝑋))
109breq2d 5114 . . . . 5 (𝑖 = (𝑛 + 1) → (𝑄 (𝑖 𝑋) ↔ 𝑄 ((𝑛 + 1) 𝑋)))
1110imbi1d 341 . . . 4 (𝑖 = (𝑛 + 1) → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋)))
12 oveq1 7376 . . . . . 6 (𝑖 = 𝑁 → (𝑖 𝑋) = (𝑁 𝑋))
1312breq2d 5114 . . . . 5 (𝑖 = 𝑁 → (𝑄 (𝑖 𝑋) ↔ 𝑄 (𝑁 𝑋)))
1413imbi1d 341 . . . 4 (𝑖 = 𝑁 → ((𝑄 (𝑖 𝑋) → 𝑄 𝑋) ↔ (𝑄 (𝑁 𝑋) → 𝑄 𝑋)))
15 rprmdvdspow.x . . . . . . . . 9 (𝜑𝑋𝐵)
16 rprmdvdspow.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
17 rprmdvdspow.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1816, 17mgpbas 20030 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
19 eqid 2729 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
2016, 19ringidval 20068 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
21 rprmdvdspow.o . . . . . . . . . 10 = (.g𝑀)
2218, 20, 21mulg0 18982 . . . . . . . . 9 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2315, 22syl 17 . . . . . . . 8 (𝜑 → (0 𝑋) = (1r𝑅))
2423breq2d 5114 . . . . . . 7 (𝜑 → (𝑄 (0 𝑋) ↔ 𝑄 (1r𝑅)))
2524biimpa 476 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → 𝑄 (1r𝑅))
26 rprmdvdspow.d . . . . . . . 8 = (∥r𝑅)
27 rprmdvdspow.p . . . . . . . 8 𝑃 = (RPrime‘𝑅)
28 rprmdvdspow.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
29 rprmdvdspow.q . . . . . . . 8 (𝜑𝑄𝑃)
3019, 26, 27, 28, 29rprmndvdsr1 33468 . . . . . . 7 (𝜑 → ¬ 𝑄 (1r𝑅))
3130adantr 480 . . . . . 6 ((𝜑𝑄 (0 𝑋)) → ¬ 𝑄 (1r𝑅))
3225, 31pm2.21dd 195 . . . . 5 ((𝜑𝑄 (0 𝑋)) → 𝑄 𝑋)
3332ex 412 . . . 4 (𝜑 → (𝑄 (0 𝑋) → 𝑄 𝑋))
34 simpllr 775 . . . . . . 7 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → (𝑄 (𝑛 𝑋) → 𝑄 𝑋))
3534syldbl2 841 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 (𝑛 𝑋)) → 𝑄 𝑋)
36 simpr 484 . . . . . 6 (((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) ∧ 𝑄 𝑋) → 𝑄 𝑋)
37 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
3828ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑅 ∈ CRing)
3929ad3antrrr 730 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄𝑃)
4028crngringd 20131 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
4116ringmgp 20124 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
4240, 41syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mnd)
4342ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑀 ∈ Mnd)
44 simpllr 775 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑛 ∈ ℕ0)
4515ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑋𝐵)
4618, 21, 43, 44, 45mulgnn0cld 19003 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑛 𝑋) ∈ 𝐵)
4742adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑀 ∈ Mnd)
48 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
4915adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5016, 37mgpplusg 20029 . . . . . . . . . . . 12 (.r𝑅) = (+g𝑀)
5118, 21, 50mulgnn0p1 18993 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑋𝐵) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5247, 48, 49, 51syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) 𝑋) = ((𝑛 𝑋)(.r𝑅)𝑋))
5352breq2d 5114 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑄 ((𝑛 + 1) 𝑋) ↔ 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋)))
5453biimpa 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5554adantlr 715 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 ((𝑛 𝑋)(.r𝑅)𝑋))
5617, 27, 26, 37, 38, 39, 46, 45, 55rprmdvds 33463 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → (𝑄 (𝑛 𝑋) ∨ 𝑄 𝑋))
5735, 36, 56mpjaodan 960 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) ∧ 𝑄 ((𝑛 + 1) 𝑋)) → 𝑄 𝑋)
5857ex 412 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑄 (𝑛 𝑋) → 𝑄 𝑋)) → (𝑄 ((𝑛 + 1) 𝑋) → 𝑄 𝑋))
595, 8, 11, 14, 33, 58nn0indd 12607 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
602, 59mpdan 687 . 2 (𝜑 → (𝑄 (𝑁 𝑋) → 𝑄 𝑋))
611, 60mpd 15 1 (𝜑𝑄 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  Basecbs 17155  .rcmulr 17197  Mndcmnd 18637  .gcmg 18975  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  rcdsr 20239  RPrimecrpm 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mulg 18976  df-cmn 19688  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-rprm 20318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator