MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 9273
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9270, phplem2 9271, nneneq 9272, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 18-Nov-2024.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4423 . . . . . 6 ∅ ⊆ 𝐵
2 sspsstr 4131 . . . . . 6 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 689 . . . . 5 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4470 . . . . . 6 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2947 . . . . . 6 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 275 . . . . 5 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 218 . . . 4 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7934 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 1003 . . . 4 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 592 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4494 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4121 . . . . . . . . . . . . . . . . . . 19 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4167 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4736 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 4034 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 217 . . . . . . . . . . . . . . . . . . . 20 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18imbitrrid 246 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
2012, 19syl5 34 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
21 peano2 7929 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
22 nnfi 9233 . . . . . . . . . . . . . . . . . . 19 (suc 𝑥 ∈ ω → suc 𝑥 ∈ Fin)
23 diffi 9242 . . . . . . . . . . . . . . . . . . 19 (suc 𝑥 ∈ Fin → (suc 𝑥 ∖ {𝑦}) ∈ Fin)
24 ssdomfi 9262 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∖ {𝑦}) ∈ Fin → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2521, 22, 23, 244syl 19 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2620, 25sylan9 507 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦𝐵𝑥 ∈ ω) → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
27263impia 1117 . . . . . . . . . . . . . . . 16 ((¬ 𝑦𝐵𝑥 ∈ ω ∧ 𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
28273com23 1126 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
29283expa 1118 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ 𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
3029adantrr 716 . . . . . . . . . . . . 13 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
31 nnfi 9233 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ∈ Fin)
3231ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝑥 ∈ Fin)
33 simpl 482 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
34 simpr 484 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥))
35 phplem1 9270 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
36 ensymfib 9250 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ Fin → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3731, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3935, 38mpbid 232 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
40 endom 9039 . . . . . . . . . . . . . . . 16 ((suc 𝑥 ∖ {𝑦}) ≈ 𝑥 → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
42 domtrfir 9260 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≼ 𝑥) → 𝐵𝑥)
4341, 42syl3an3 1165 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4432, 33, 34, 43syl3anc 1371 . . . . . . . . . . . . 13 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4530, 44sylancom 587 . . . . . . . . . . . 12 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4645exp43 436 . . . . . . . . . . 11 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
4746com4r 94 . . . . . . . . . 10 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
4847imp 406 . . . . . . . . 9 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
4948exlimiv 1929 . . . . . . . 8 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
5011, 49mpcom 38 . . . . . . 7 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
51 simp1 1136 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → 𝑥 ∈ ω)
52 endom 9039 . . . . . . . . . . . . . . 15 (suc 𝑥𝐵 → suc 𝑥𝐵)
53 domtrfir 9260 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5452, 53syl3an2 1164 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5531, 54syl3an1 1163 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
56 sssucid 6475 . . . . . . . . . . . . . . . . 17 𝑥 ⊆ suc 𝑥
57 ssdomfi 9262 . . . . . . . . . . . . . . . . 17 (suc 𝑥 ∈ Fin → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
5822, 56, 57mpisyl 21 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
5921, 58syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
6059adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → 𝑥 ≼ suc 𝑥)
61 sbthfi 9265 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6231, 61syl3an1 1163 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6360, 62mpd3an3 1462 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → suc 𝑥𝑥)
6451, 55, 63syl2anc 583 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
65643com23 1126 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝐵𝑥 ∧ suc 𝑥𝐵) → suc 𝑥𝑥)
66653expia 1121 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (suc 𝑥𝐵 → suc 𝑥𝑥))
67 peano2b 7920 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
68 nnord 7911 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
6967, 68sylbi 217 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
70 vex 3492 . . . . . . . . . . . . 13 𝑥 ∈ V
7170sucid 6477 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
72 nordeq 6414 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
7369, 71, 72sylancl 585 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
74 nneneq 9272 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7567, 74sylanb 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7675anidms 566 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7776necon3bbid 2984 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
7873, 77mpbird 257 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
7966, 78nsyli 157 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8079expcom 413 . . . . . . . 8 (𝐵𝑥 → (𝑥 ∈ ω → (𝑥 ∈ ω → ¬ suc 𝑥𝐵)))
8180pm2.43d 53 . . . . . . 7 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8250, 81syli 39 . . . . . 6 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8382com12 32 . . . . 5 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
84 psseq2 4114 . . . . . 6 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
85 breq1 5169 . . . . . . 7 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
8685notbid 318 . . . . . 6 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
8784, 86imbi12d 344 . . . . 5 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
8883, 87syl5ibrcom 247 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
8988rexlimiv 3154 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
9010, 89syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
9190syldbl2 840 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cdif 3973  cin 3975  wss 3976  wpss 3977  c0 4352  {csn 4648   class class class wbr 5166  Ord word 6394  suc csuc 6397  ωcom 7903  cen 9000  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  php2  9274  php2OLD  9286  php3OLD  9287  omssrncard  43502  rr-phpd  44172
  Copyright terms: Public domain W3C validator