MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 9154
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9151, phplem2 9152, nneneq 9153, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5320. (Revised by BTernaryTau, 18-Nov-2024.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4356 . . . . . 6 ∅ ⊆ 𝐵
2 sspsstr 4065 . . . . . 6 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 688 . . . . 5 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4404 . . . . . 6 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2944 . . . . . 6 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 274 . . . . 5 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 217 . . . 4 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7832 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 1001 . . . 4 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 593 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4430 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4055 . . . . . . . . . . . . . . . . . . 19 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4099 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4672 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 276 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 3969 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 216 . . . . . . . . . . . . . . . . . . . 20 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18syl5ibr 245 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
2012, 19syl5 34 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
21 peano2 7827 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
22 nnfi 9111 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ ω → suc 𝑥 ∈ Fin)
23 diffi 9123 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ Fin → (suc 𝑥 ∖ {𝑦}) ∈ Fin)
2421, 22, 233syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → (suc 𝑥 ∖ {𝑦}) ∈ Fin)
25 ssdomfi 9143 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∖ {𝑦}) ∈ Fin → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2720, 26sylan9 508 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦𝐵𝑥 ∈ ω) → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
28273impia 1117 . . . . . . . . . . . . . . . 16 ((¬ 𝑦𝐵𝑥 ∈ ω ∧ 𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
29283com23 1126 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
30293expa 1118 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ 𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
3130adantrr 715 . . . . . . . . . . . . 13 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
32 nnfi 9111 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ∈ Fin)
3332ad2antrl 726 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝑥 ∈ Fin)
34 simpl 483 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
35 simpr 485 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥))
36 phplem1 9151 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
37 ensymfib 9131 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ Fin → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3832, 37syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3938adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
4036, 39mpbid 231 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
41 endom 8919 . . . . . . . . . . . . . . . 16 ((suc 𝑥 ∖ {𝑦}) ≈ 𝑥 → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
4240, 41syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
43 domtrfir 9141 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≼ 𝑥) → 𝐵𝑥)
4442, 43syl3an3 1165 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4533, 34, 35, 44syl3anc 1371 . . . . . . . . . . . . 13 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4631, 45sylancom 588 . . . . . . . . . . . 12 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4746exp43 437 . . . . . . . . . . 11 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
4847com4r 94 . . . . . . . . . 10 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
4948imp 407 . . . . . . . . 9 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
5049exlimiv 1933 . . . . . . . 8 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
5111, 50mpcom 38 . . . . . . 7 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
52 simp1 1136 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → 𝑥 ∈ ω)
53 endom 8919 . . . . . . . . . . . . . . 15 (suc 𝑥𝐵 → suc 𝑥𝐵)
54 domtrfir 9141 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5553, 54syl3an2 1164 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5632, 55syl3an1 1163 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
57 sssucid 6397 . . . . . . . . . . . . . . . . 17 𝑥 ⊆ suc 𝑥
58 ssdomfi 9143 . . . . . . . . . . . . . . . . 17 (suc 𝑥 ∈ Fin → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
5922, 57, 58mpisyl 21 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
6021, 59syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
6160adantr 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → 𝑥 ≼ suc 𝑥)
62 sbthfi 9146 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6332, 62syl3an1 1163 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6461, 63mpd3an3 1462 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → suc 𝑥𝑥)
6552, 56, 64syl2anc 584 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
66653com23 1126 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝐵𝑥 ∧ suc 𝑥𝐵) → suc 𝑥𝑥)
67663expia 1121 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (suc 𝑥𝐵 → suc 𝑥𝑥))
68 peano2b 7819 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
69 nnord 7810 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
7068, 69sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
71 vex 3449 . . . . . . . . . . . . 13 𝑥 ∈ V
7271sucid 6399 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
73 nordeq 6336 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
7470, 72, 73sylancl 586 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
75 nneneq 9153 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7668, 75sylanb 581 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7776anidms 567 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7877necon3bbid 2981 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
7974, 78mpbird 256 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
8067, 79nsyli 157 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8180expcom 414 . . . . . . . 8 (𝐵𝑥 → (𝑥 ∈ ω → (𝑥 ∈ ω → ¬ suc 𝑥𝐵)))
8281pm2.43d 53 . . . . . . 7 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8351, 82syli 39 . . . . . 6 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8483com12 32 . . . . 5 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
85 psseq2 4048 . . . . . 6 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
86 breq1 5108 . . . . . . 7 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
8786notbid 317 . . . . . 6 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
8885, 87imbi12d 344 . . . . 5 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
8984, 88syl5ibrcom 246 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
9089rexlimiv 3145 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
9110, 90syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
9291syldbl2 839 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  cdif 3907  cin 3909  wss 3910  wpss 3911  c0 4282  {csn 4586   class class class wbr 5105  Ord word 6316  suc csuc 6319  ωcom 7802  cen 8880  cdom 8881  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-en 8884  df-dom 8885  df-fin 8887
This theorem is referenced by:  php2  9155  php2OLD  9167  php3OLD  9168  omssrncard  41802  rr-phpd  42473
  Copyright terms: Public domain W3C validator