MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 8685
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 8680 through phplem4 8683, nneneq 8684, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4304 . . . . . . . 8 ∅ ⊆ 𝐵
2 sspsstr 4033 . . . . . . . 8 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 689 . . . . . . 7 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4352 . . . . . . . 8 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2988 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 278 . . . . . . 7 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 221 . . . . . 6 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7586 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 1000 . . . . . 6 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 595 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4378 . . . . . . . . . 10 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4023 . . . . . . . . . . . . . . . . 17 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4067 . . . . . . . . . . . . . . . . . 18 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4607 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4361 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 280 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 3940 . . . . . . . . . . . . . . . . . . 19 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 220 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18syl5ibr 249 . . . . . . . . . . . . . . . . 17 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
20 vex 3444 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
2120sucex 7506 . . . . . . . . . . . . . . . . . . 19 suc 𝑥 ∈ V
2221difexi 5196 . . . . . . . . . . . . . . . . . 18 (suc 𝑥 ∖ {𝑦}) ∈ V
23 ssdomg 8538 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∖ {𝑦}) ∈ V → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
2512, 19, 24syl56 36 . . . . . . . . . . . . . . . 16 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2625imp 410 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
27 vex 3444 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2820, 27phplem3 8682 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
2928ensymd 8543 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
30 domentr 8551 . . . . . . . . . . . . . . 15 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) → 𝐵𝑥)
3126, 29, 30syl2an 598 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
3231exp43 440 . . . . . . . . . . . . 13 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
3332com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
3433imp 410 . . . . . . . . . . 11 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3534exlimiv 1931 . . . . . . . . . 10 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3611, 35mpcom 38 . . . . . . . . 9 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
37 endomtr 8550 . . . . . . . . . . . 12 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
38 sssucid 6236 . . . . . . . . . . . . 13 𝑥 ⊆ suc 𝑥
39 ssdomg 8538 . . . . . . . . . . . . 13 (suc 𝑥 ∈ V → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
4021, 38, 39mp2 9 . . . . . . . . . . . 12 𝑥 ≼ suc 𝑥
41 sbth 8621 . . . . . . . . . . . 12 ((suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
4237, 40, 41sylancl 589 . . . . . . . . . . 11 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
4342expcom 417 . . . . . . . . . 10 (𝐵𝑥 → (suc 𝑥𝐵 → suc 𝑥𝑥))
44 peano2b 7576 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
45 nnord 7568 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
4644, 45sylbi 220 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
4720sucid 6238 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
48 nordeq 6178 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
4946, 47, 48sylancl 589 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
50 nneneq 8684 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5144, 50sylanb 584 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5251anidms 570 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5352necon3bbid 3024 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
5449, 53mpbird 260 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
5543, 54nsyli 160 . . . . . . . . 9 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5636, 55syli 39 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5756com12 32 . . . . . . 7 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
58 psseq2 4016 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
59 breq1 5033 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
6059notbid 321 . . . . . . . 8 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
6158, 60imbi12d 348 . . . . . . 7 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
6257, 61syl5ibrcom 250 . . . . . 6 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6362rexlimiv 3239 . . . . 5 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
6410, 63syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
6564ex 416 . . 3 (𝐴 ∈ ω → (𝐵𝐴 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6665pm2.43d 53 . 2 (𝐴 ∈ ω → (𝐵𝐴 → ¬ 𝐴𝐵))
6766imp 410 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  cin 3880  wss 3881  wpss 3882  c0 4243  {csn 4525   class class class wbr 5030  Ord word 6158  suc csuc 6161  ωcom 7560  cen 8489  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-er 8272  df-en 8493  df-dom 8494
This theorem is referenced by:  php2  8686  php3  8687  rr-phpd  40916
  Copyright terms: Public domain W3C validator