MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 8897
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 8892 through phplem4 8895, nneneq 8896, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4327 . . . . . . . 8 ∅ ⊆ 𝐵
2 sspsstr 4036 . . . . . . . 8 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 686 . . . . . . 7 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4375 . . . . . . . 8 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2943 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 274 . . . . . . 7 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 217 . . . . . 6 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7716 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 999 . . . . . 6 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 592 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4401 . . . . . . . . . 10 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4026 . . . . . . . . . . . . . . . . 17 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4070 . . . . . . . . . . . . . . . . . 18 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4644 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4384 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 276 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 3942 . . . . . . . . . . . . . . . . . . 19 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 216 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18syl5ibr 245 . . . . . . . . . . . . . . . . 17 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
20 vex 3426 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
2120sucex 7633 . . . . . . . . . . . . . . . . . . 19 suc 𝑥 ∈ V
2221difexi 5247 . . . . . . . . . . . . . . . . . 18 (suc 𝑥 ∖ {𝑦}) ∈ V
23 ssdomg 8741 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∖ {𝑦}) ∈ V → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
2512, 19, 24syl56 36 . . . . . . . . . . . . . . . 16 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2625imp 406 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
27 vex 3426 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2820, 27phplem3 8894 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
2928ensymd 8746 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
30 domentr 8754 . . . . . . . . . . . . . . 15 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) → 𝐵𝑥)
3126, 29, 30syl2an 595 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
3231exp43 436 . . . . . . . . . . . . 13 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
3332com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
3433imp 406 . . . . . . . . . . 11 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3534exlimiv 1934 . . . . . . . . . 10 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3611, 35mpcom 38 . . . . . . . . 9 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
37 endomtr 8753 . . . . . . . . . . . 12 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
38 sssucid 6328 . . . . . . . . . . . . 13 𝑥 ⊆ suc 𝑥
39 ssdomg 8741 . . . . . . . . . . . . 13 (suc 𝑥 ∈ V → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
4021, 38, 39mp2 9 . . . . . . . . . . . 12 𝑥 ≼ suc 𝑥
41 sbth 8833 . . . . . . . . . . . 12 ((suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
4237, 40, 41sylancl 585 . . . . . . . . . . 11 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
4342expcom 413 . . . . . . . . . 10 (𝐵𝑥 → (suc 𝑥𝐵 → suc 𝑥𝑥))
44 peano2b 7704 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
45 nnord 7695 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
4644, 45sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
4720sucid 6330 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
48 nordeq 6270 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
4946, 47, 48sylancl 585 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
50 nneneq 8896 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5144, 50sylanb 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5251anidms 566 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5352necon3bbid 2980 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
5449, 53mpbird 256 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
5543, 54nsyli 157 . . . . . . . . 9 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5636, 55syli 39 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5756com12 32 . . . . . . 7 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
58 psseq2 4019 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
59 breq1 5073 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
6059notbid 317 . . . . . . . 8 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
6158, 60imbi12d 344 . . . . . . 7 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
6257, 61syl5ibrcom 246 . . . . . 6 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6362rexlimiv 3208 . . . . 5 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
6410, 63syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
6564ex 412 . . 3 (𝐴 ∈ ω → (𝐵𝐴 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6665pm2.43d 53 . 2 (𝐴 ∈ ω → (𝐵𝐴 → ¬ 𝐴𝐵))
6766imp 406 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  wss 3883  wpss 3884  c0 4253  {csn 4558   class class class wbr 5070  Ord word 6250  suc csuc 6253  ωcom 7687  cen 8688  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693
This theorem is referenced by:  php2  8898  php3  8899  rr-phpd  41710
  Copyright terms: Public domain W3C validator