MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 8679
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 8674 through phplem4 8677, nneneq 8678, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4326 . . . . . . . 8 ∅ ⊆ 𝐵
2 sspsstr 4061 . . . . . . . 8 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 688 . . . . . . 7 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4372 . . . . . . . 8 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 3007 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 277 . . . . . . 7 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 220 . . . . . 6 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7584 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 999 . . . . . 6 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 594 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4396 . . . . . . . . . 10 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4051 . . . . . . . . . . . . . . . . 17 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4095 . . . . . . . . . . . . . . . . . 18 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4623 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4379 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 279 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 3971 . . . . . . . . . . . . . . . . . . 19 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 219 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18syl5ibr 248 . . . . . . . . . . . . . . . . 17 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
20 vex 3476 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
2120sucex 7504 . . . . . . . . . . . . . . . . . . 19 suc 𝑥 ∈ V
2221difexi 5208 . . . . . . . . . . . . . . . . . 18 (suc 𝑥 ∖ {𝑦}) ∈ V
23 ssdomg 8533 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∖ {𝑦}) ∈ V → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
2512, 19, 24syl56 36 . . . . . . . . . . . . . . . 16 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2625imp 409 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
27 vex 3476 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2820, 27phplem3 8676 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
2928ensymd 8538 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
30 domentr 8546 . . . . . . . . . . . . . . 15 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥) → 𝐵𝑥)
3126, 29, 30syl2an 597 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
3231exp43 439 . . . . . . . . . . . . 13 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
3332com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
3433imp 409 . . . . . . . . . . 11 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3534exlimiv 1931 . . . . . . . . . 10 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
3611, 35mpcom 38 . . . . . . . . 9 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
37 endomtr 8545 . . . . . . . . . . . 12 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
38 sssucid 6244 . . . . . . . . . . . . 13 𝑥 ⊆ suc 𝑥
39 ssdomg 8533 . . . . . . . . . . . . 13 (suc 𝑥 ∈ V → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
4021, 38, 39mp2 9 . . . . . . . . . . . 12 𝑥 ≼ suc 𝑥
41 sbth 8615 . . . . . . . . . . . 12 ((suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
4237, 40, 41sylancl 588 . . . . . . . . . . 11 ((suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
4342expcom 416 . . . . . . . . . 10 (𝐵𝑥 → (suc 𝑥𝐵 → suc 𝑥𝑥))
44 peano2b 7574 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
45 nnord 7566 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
4644, 45sylbi 219 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
4720sucid 6246 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
48 nordeq 6186 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
4946, 47, 48sylancl 588 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
50 nneneq 8678 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5144, 50sylanb 583 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5251anidms 569 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
5352necon3bbid 3043 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
5449, 53mpbird 259 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
5543, 54nsyli 160 . . . . . . . . 9 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5636, 55syli 39 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
5756com12 32 . . . . . . 7 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
58 psseq2 4044 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
59 breq1 5045 . . . . . . . . 9 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
6059notbid 320 . . . . . . . 8 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
6158, 60imbi12d 347 . . . . . . 7 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
6257, 61syl5ibrcom 249 . . . . . 6 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6362rexlimiv 3267 . . . . 5 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
6410, 63syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
6564ex 415 . . 3 (𝐴 ∈ ω → (𝐵𝐴 → (𝐵𝐴 → ¬ 𝐴𝐵)))
6665pm2.43d 53 . 2 (𝐴 ∈ ω → (𝐵𝐴 → ¬ 𝐴𝐵))
6766imp 409 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3006  wrex 3126  Vcvv 3473  cdif 3910  cin 3912  wss 3913  wpss 3914  c0 4269  {csn 4543   class class class wbr 5042  Ord word 6166  suc csuc 6169  ωcom 7558  cen 8484  cdom 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-om 7559  df-er 8267  df-en 8488  df-dom 8489
This theorem is referenced by:  php2  8680  php3  8681  rr-phpd  40699
  Copyright terms: Public domain W3C validator