MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Structured version   Visualization version   GIF version

Theorem php 9226
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9223, phplem2 9224, nneneq 9225, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5359. (Revised by BTernaryTau, 18-Nov-2024.)
Assertion
Ref Expression
php ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)

Proof of Theorem php
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4392 . . . . . 6 ∅ ⊆ 𝐵
2 sspsstr 4101 . . . . . 6 ((∅ ⊆ 𝐵𝐵𝐴) → ∅ ⊊ 𝐴)
31, 2mpan 689 . . . . 5 (𝐵𝐴 → ∅ ⊊ 𝐴)
4 0pss 4440 . . . . . 6 (∅ ⊊ 𝐴𝐴 ≠ ∅)
5 df-ne 2936 . . . . . 6 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitri 275 . . . . 5 (∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅)
73, 6sylib 217 . . . 4 (𝐵𝐴 → ¬ 𝐴 = ∅)
8 nn0suc 7895 . . . . 5 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
98orcanai 1001 . . . 4 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
107, 9sylan2 592 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
11 pssnel 4466 . . . . . . . 8 (𝐵 ⊊ suc 𝑥 → ∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵))
12 pssss 4091 . . . . . . . . . . . . . . . . . . 19 (𝐵 ⊊ suc 𝑥𝐵 ⊆ suc 𝑥)
13 ssdif 4135 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ⊆ suc 𝑥 → (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦}))
14 disjsn 4711 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝐵)
15 disj3 4449 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∩ {𝑦}) = ∅ ↔ 𝐵 = (𝐵 ∖ {𝑦}))
1614, 15bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝐵𝐵 = (𝐵 ∖ {𝑦}))
17 sseq1 4003 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 = (𝐵 ∖ {𝑦}) → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1816, 17sylbi 216 . . . . . . . . . . . . . . . . . . . 20 𝑦𝐵 → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) ↔ (𝐵 ∖ {𝑦}) ⊆ (suc 𝑥 ∖ {𝑦})))
1913, 18imbitrrid 245 . . . . . . . . . . . . . . . . . . 19 𝑦𝐵 → (𝐵 ⊆ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
2012, 19syl5 34 . . . . . . . . . . . . . . . . . 18 𝑦𝐵 → (𝐵 ⊊ suc 𝑥𝐵 ⊆ (suc 𝑥 ∖ {𝑦})))
21 peano2 7890 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
22 nnfi 9183 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ ω → suc 𝑥 ∈ Fin)
23 diffi 9195 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ Fin → (suc 𝑥 ∖ {𝑦}) ∈ Fin)
2421, 22, 233syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → (suc 𝑥 ∖ {𝑦}) ∈ Fin)
25 ssdomfi 9215 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∖ {𝑦}) ∈ Fin → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2624, 25syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝐵 ⊆ (suc 𝑥 ∖ {𝑦}) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
2720, 26sylan9 507 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦𝐵𝑥 ∈ ω) → (𝐵 ⊊ suc 𝑥𝐵 ≼ (suc 𝑥 ∖ {𝑦})))
28273impia 1115 . . . . . . . . . . . . . . . 16 ((¬ 𝑦𝐵𝑥 ∈ ω ∧ 𝐵 ⊊ suc 𝑥) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
29283com23 1124 . . . . . . . . . . . . . . 15 ((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
30293expa 1116 . . . . . . . . . . . . . 14 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ 𝑥 ∈ ω) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
3130adantrr 716 . . . . . . . . . . . . 13 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
32 nnfi 9183 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ∈ Fin)
3332ad2antrl 727 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝑥 ∈ Fin)
34 simpl 482 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵 ≼ (suc 𝑥 ∖ {𝑦}))
35 simpr 484 . . . . . . . . . . . . . 14 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥))
36 phplem1 9223 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → 𝑥 ≈ (suc 𝑥 ∖ {𝑦}))
37 ensymfib 9203 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ Fin → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3832, 37syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
3938adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (𝑥 ≈ (suc 𝑥 ∖ {𝑦}) ↔ (suc 𝑥 ∖ {𝑦}) ≈ 𝑥))
4036, 39mpbid 231 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≈ 𝑥)
41 endom 8991 . . . . . . . . . . . . . . . 16 ((suc 𝑥 ∖ {𝑦}) ≈ 𝑥 → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
4240, 41syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥) → (suc 𝑥 ∖ {𝑦}) ≼ 𝑥)
43 domtrfir 9213 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (suc 𝑥 ∖ {𝑦}) ≼ 𝑥) → 𝐵𝑥)
4442, 43syl3an3 1163 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ 𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4533, 34, 35, 44syl3anc 1369 . . . . . . . . . . . . 13 ((𝐵 ≼ (suc 𝑥 ∖ {𝑦}) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4631, 45sylancom 587 . . . . . . . . . . . 12 (((¬ 𝑦𝐵𝐵 ⊊ suc 𝑥) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥)) → 𝐵𝑥)
4746exp43 436 . . . . . . . . . . 11 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → (𝑦 ∈ suc 𝑥𝐵𝑥))))
4847com4r 94 . . . . . . . . . 10 (𝑦 ∈ suc 𝑥 → (¬ 𝑦𝐵 → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))))
4948imp 406 . . . . . . . . 9 ((𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
5049exlimiv 1926 . . . . . . . 8 (∃𝑦(𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦𝐵) → (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥)))
5111, 50mpcom 38 . . . . . . 7 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → 𝐵𝑥))
52 simp1 1134 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → 𝑥 ∈ ω)
53 endom 8991 . . . . . . . . . . . . . . 15 (suc 𝑥𝐵 → suc 𝑥𝐵)
54 domtrfir 9213 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5553, 54syl3an2 1162 . . . . . . . . . . . . . 14 ((𝑥 ∈ Fin ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
5632, 55syl3an1 1161 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
57 sssucid 6443 . . . . . . . . . . . . . . . . 17 𝑥 ⊆ suc 𝑥
58 ssdomfi 9215 . . . . . . . . . . . . . . . . 17 (suc 𝑥 ∈ Fin → (𝑥 ⊆ suc 𝑥𝑥 ≼ suc 𝑥))
5922, 57, 58mpisyl 21 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
6021, 59syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → 𝑥 ≼ suc 𝑥)
6160adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → 𝑥 ≼ suc 𝑥)
62 sbthfi 9218 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6332, 62syl3an1 1161 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ suc 𝑥𝑥𝑥 ≼ suc 𝑥) → suc 𝑥𝑥)
6461, 63mpd3an3 1459 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ suc 𝑥𝑥) → suc 𝑥𝑥)
6552, 56, 64syl2anc 583 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ suc 𝑥𝐵𝐵𝑥) → suc 𝑥𝑥)
66653com23 1124 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝐵𝑥 ∧ suc 𝑥𝐵) → suc 𝑥𝑥)
67663expia 1119 . . . . . . . . . 10 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (suc 𝑥𝐵 → suc 𝑥𝑥))
68 peano2b 7881 . . . . . . . . . . . . 13 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
69 nnord 7872 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → Ord suc 𝑥)
7068, 69sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ ω → Ord suc 𝑥)
71 vex 3473 . . . . . . . . . . . . 13 𝑥 ∈ V
7271sucid 6445 . . . . . . . . . . . 12 𝑥 ∈ suc 𝑥
73 nordeq 6382 . . . . . . . . . . . 12 ((Ord suc 𝑥𝑥 ∈ suc 𝑥) → suc 𝑥𝑥)
7470, 72, 73sylancl 585 . . . . . . . . . . 11 (𝑥 ∈ ω → suc 𝑥𝑥)
75 nneneq 9225 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7668, 75sylanb 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ 𝑥 ∈ ω) → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7776anidms 566 . . . . . . . . . . . 12 (𝑥 ∈ ω → (suc 𝑥𝑥 ↔ suc 𝑥 = 𝑥))
7877necon3bbid 2973 . . . . . . . . . . 11 (𝑥 ∈ ω → (¬ suc 𝑥𝑥 ↔ suc 𝑥𝑥))
7974, 78mpbird 257 . . . . . . . . . 10 (𝑥 ∈ ω → ¬ suc 𝑥𝑥)
8067, 79nsyli 157 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝐵𝑥) → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8180expcom 413 . . . . . . . 8 (𝐵𝑥 → (𝑥 ∈ ω → (𝑥 ∈ ω → ¬ suc 𝑥𝐵)))
8281pm2.43d 53 . . . . . . 7 (𝐵𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8351, 82syli 39 . . . . . 6 (𝐵 ⊊ suc 𝑥 → (𝑥 ∈ ω → ¬ suc 𝑥𝐵))
8483com12 32 . . . . 5 (𝑥 ∈ ω → (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵))
85 psseq2 4084 . . . . . 6 (𝐴 = suc 𝑥 → (𝐵𝐴𝐵 ⊊ suc 𝑥))
86 breq1 5145 . . . . . . 7 (𝐴 = suc 𝑥 → (𝐴𝐵 ↔ suc 𝑥𝐵))
8786notbid 318 . . . . . 6 (𝐴 = suc 𝑥 → (¬ 𝐴𝐵 ↔ ¬ suc 𝑥𝐵))
8885, 87imbi12d 344 . . . . 5 (𝐴 = suc 𝑥 → ((𝐵𝐴 → ¬ 𝐴𝐵) ↔ (𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥𝐵)))
8984, 88syl5ibrcom 246 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵)))
9089rexlimiv 3143 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → (𝐵𝐴 → ¬ 𝐴𝐵))
9110, 90syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵𝐴 → ¬ 𝐴𝐵))
9291syldbl2 840 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wne 2935  wrex 3065  cdif 3941  cin 3943  wss 3944  wpss 3945  c0 4318  {csn 4624   class class class wbr 5142  Ord word 6362  suc csuc 6365  ωcom 7864  cen 8952  cdom 8953  Fincfn 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-en 8956  df-dom 8957  df-fin 8959
This theorem is referenced by:  php2  9227  php2OLD  9239  php3OLD  9240  omssrncard  42893  rr-phpd  43563
  Copyright terms: Public domain W3C validator