| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| tpeq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4697 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | 1 | uneq1d 4130 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴, 𝐶} ∪ {𝐷}) = ({𝐵, 𝐶} ∪ {𝐷})) |
| 3 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐶, 𝐷} = ({𝐴, 𝐶} ∪ {𝐷}) | |
| 4 | df-tp 4594 | . 2 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: tpeq1d 4709 hashtpg 14450 hash3tpde 14458 erngset 40794 erngset-rN 40802 dvh4dimN 41441 cycl3grtri 47946 grimgrtri 47948 grlimgrtri 47995 usgrexmpl1tri 48016 lmod1 48481 |
| Copyright terms: Public domain | W3C validator |