MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq1 Structured version   Visualization version   GIF version

Theorem tpeq1 4678
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq1 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})

Proof of Theorem tpeq1
StepHypRef Expression
1 preq1 4669 . . 3 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
21uneq1d 4096 . 2 (𝐴 = 𝐵 → ({𝐴, 𝐶} ∪ {𝐷}) = ({𝐵, 𝐶} ∪ {𝐷}))
3 df-tp 4566 . 2 {𝐴, 𝐶, 𝐷} = ({𝐴, 𝐶} ∪ {𝐷})
4 df-tp 4566 . 2 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
52, 3, 43eqtr4g 2803 1 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  {csn 4561  {cpr 4563  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564  df-tp 4566
This theorem is referenced by:  tpeq1d  4681  hashtpg  14199  erngset  38814  erngset-rN  38822  dvh4dimN  39461  lmod1  45833
  Copyright terms: Public domain W3C validator