| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| tpeq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4681 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | 1 | uneq1d 4112 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴, 𝐶} ∪ {𝐷}) = ({𝐵, 𝐶} ∪ {𝐷})) |
| 3 | df-tp 4576 | . 2 ⊢ {𝐴, 𝐶, 𝐷} = ({𝐴, 𝐶} ∪ {𝐷}) | |
| 4 | df-tp 4576 | . 2 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3895 {csn 4571 {cpr 4573 {ctp 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4572 df-pr 4574 df-tp 4576 |
| This theorem is referenced by: tpeq1d 4693 hashtpg 14387 hash3tpde 14395 erngset 40839 erngset-rN 40847 dvh4dimN 41486 cycl3grtri 47978 grimgrtri 47980 grlimgrtri 48034 usgrexmpl1tri 48056 lmod1 48524 |
| Copyright terms: Public domain | W3C validator |