MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq1 Structured version   Visualization version   GIF version

Theorem tpeq1 4702
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq1 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})

Proof of Theorem tpeq1
StepHypRef Expression
1 preq1 4693 . . 3 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
21uneq1d 4126 . 2 (𝐴 = 𝐵 → ({𝐴, 𝐶} ∪ {𝐷}) = ({𝐵, 𝐶} ∪ {𝐷}))
3 df-tp 4590 . 2 {𝐴, 𝐶, 𝐷} = ({𝐴, 𝐶} ∪ {𝐷})
4 df-tp 4590 . 2 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
52, 3, 43eqtr4g 2789 1 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3909  {csn 4585  {cpr 4587  {ctp 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-sn 4586  df-pr 4588  df-tp 4590
This theorem is referenced by:  tpeq1d  4705  hashtpg  14426  hash3tpde  14434  erngset  40767  erngset-rN  40775  dvh4dimN  41414  cycl3grtri  47919  grimgrtri  47921  grlimgrtri  47968  usgrexmpl1tri  47989  lmod1  48454
  Copyright terms: Public domain W3C validator