![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpidm13 | Structured version Visualization version GIF version |
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tpidm13 | ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 4748 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴} | |
2 | tpidm12 4754 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} | |
3 | 1, 2 | eqtr3i 2756 | 1 ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cpr 4625 {ctp 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-un 3948 df-sn 4624 df-pr 4626 df-tp 4628 |
This theorem is referenced by: fntpb 7205 hashtpg 14449 |
Copyright terms: Public domain | W3C validator |