| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > tpidm13 | Structured version Visualization version GIF version | ||
| Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.) | 
| Ref | Expression | 
|---|---|
| tpidm13 | ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tprot 4731 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴} | |
| 2 | tpidm12 4737 | . 2 ⊢ {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eqtr3i 2759 | 1 ⊢ {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 {cpr 4610 {ctp 4612 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-sn 4609 df-pr 4611 df-tp 4613 | 
| This theorem is referenced by: fntpb 7212 hashtpg 14507 hash3tpde 14515 | 
| Copyright terms: Public domain | W3C validator |