MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm13 Structured version   Visualization version   GIF version

Theorem tpidm13 4695
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 4688 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴}
2 tpidm12 4694 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
31, 2eqtr3i 2849 1 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  {cpr 4572  {ctp 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-v 3499  df-un 3944  df-sn 4571  df-pr 4573  df-tp 4575
This theorem is referenced by:  fntpb  6975  hashtpg  13846
  Copyright terms: Public domain W3C validator