MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm13 Structured version   Visualization version   GIF version

Theorem tpidm13 4762
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 4755 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴}
2 tpidm12 4761 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
31, 2eqtr3i 2766 1 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  {cpr 4634  {ctp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3969  df-sn 4633  df-pr 4635  df-tp 4637
This theorem is referenced by:  fntpb  7233  hashtpg  14527  hash3tpde  14535
  Copyright terms: Public domain W3C validator