MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashtpg Structured version   Visualization version   GIF version

Theorem hashtpg 14399
Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
hashtpg ((𝐴𝑈𝐵𝑉𝐶𝑊) → ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (♯‘{𝐴, 𝐵, 𝐶}) = 3))

Proof of Theorem hashtpg
StepHypRef Expression
1 simpl3 1194 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → 𝐶𝑊)
2 prfi 9219 . . . . . . 7 {𝐴, 𝐵} ∈ Fin
32a1i 11 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → {𝐴, 𝐵} ∈ Fin)
4 elprg 4600 . . . . . . . . . . . . . . . 16 (𝐶𝑊 → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴𝐶 = 𝐵)))
5 orcom 870 . . . . . . . . . . . . . . . . 17 ((𝐶 = 𝐴𝐶 = 𝐵) ↔ (𝐶 = 𝐵𝐶 = 𝐴))
6 nne 2933 . . . . . . . . . . . . . . . . . . 19 𝐵𝐶𝐵 = 𝐶)
7 eqcom 2740 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐶𝐶 = 𝐵)
86, 7bitr2i 276 . . . . . . . . . . . . . . . . . 18 (𝐶 = 𝐵 ↔ ¬ 𝐵𝐶)
9 nne 2933 . . . . . . . . . . . . . . . . . . 19 𝐶𝐴𝐶 = 𝐴)
109bicomi 224 . . . . . . . . . . . . . . . . . 18 (𝐶 = 𝐴 ↔ ¬ 𝐶𝐴)
118, 10orbi12i 914 . . . . . . . . . . . . . . . . 17 ((𝐶 = 𝐵𝐶 = 𝐴) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴))
125, 11bitri 275 . . . . . . . . . . . . . . . 16 ((𝐶 = 𝐴𝐶 = 𝐵) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴))
134, 12bitrdi 287 . . . . . . . . . . . . . . 15 (𝐶𝑊 → (𝐶 ∈ {𝐴, 𝐵} ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
1413biimpd 229 . . . . . . . . . . . . . 14 (𝐶𝑊 → (𝐶 ∈ {𝐴, 𝐵} → (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
15143ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (𝐶 ∈ {𝐴, 𝐵} → (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
1615imp 406 . . . . . . . . . . . 12 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ 𝐶 ∈ {𝐴, 𝐵}) → (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴))
1716olcd 874 . . . . . . . . . . 11 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ 𝐶 ∈ {𝐴, 𝐵}) → (¬ 𝐴𝐵 ∨ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
1817ex 412 . . . . . . . . . 10 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (𝐶 ∈ {𝐴, 𝐵} → (¬ 𝐴𝐵 ∨ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴))))
19 3orass 1089 . . . . . . . . . 10 ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴) ↔ (¬ 𝐴𝐵 ∨ (¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
2018, 19imbitrrdi 252 . . . . . . . . 9 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (𝐶 ∈ {𝐴, 𝐵} → (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴)))
21 3ianor 1106 . . . . . . . . 9 (¬ (𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴))
2220, 21imbitrrdi 252 . . . . . . . 8 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (𝐶 ∈ {𝐴, 𝐵} → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)))
2322con2d 134 . . . . . . 7 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ((𝐴𝐵𝐵𝐶𝐶𝐴) → ¬ 𝐶 ∈ {𝐴, 𝐵}))
2423imp 406 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → ¬ 𝐶 ∈ {𝐴, 𝐵})
25 hashunsng 14306 . . . . . . 7 (𝐶𝑊 → (({𝐴, 𝐵} ∈ Fin ∧ ¬ 𝐶 ∈ {𝐴, 𝐵}) → (♯‘({𝐴, 𝐵} ∪ {𝐶})) = ((♯‘{𝐴, 𝐵}) + 1)))
2625imp 406 . . . . . 6 ((𝐶𝑊 ∧ ({𝐴, 𝐵} ∈ Fin ∧ ¬ 𝐶 ∈ {𝐴, 𝐵})) → (♯‘({𝐴, 𝐵} ∪ {𝐶})) = ((♯‘{𝐴, 𝐵}) + 1))
271, 3, 24, 26syl12anc 836 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (♯‘({𝐴, 𝐵} ∪ {𝐶})) = ((♯‘{𝐴, 𝐵}) + 1))
28 simpr1 1195 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → 𝐴𝐵)
29 3simpa 1148 . . . . . . . . 9 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (𝐴𝑈𝐵𝑉))
3029adantr 480 . . . . . . . 8 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (𝐴𝑈𝐵𝑉))
31 hashprg 14309 . . . . . . . 8 ((𝐴𝑈𝐵𝑉) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
3230, 31syl 17 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
3328, 32mpbid 232 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (♯‘{𝐴, 𝐵}) = 2)
3433oveq1d 7370 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → ((♯‘{𝐴, 𝐵}) + 1) = (2 + 1))
3527, 34eqtrd 2768 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (♯‘({𝐴, 𝐵} ∪ {𝐶})) = (2 + 1))
36 df-tp 4582 . . . . 5 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3736fveq2i 6834 . . . 4 (♯‘{𝐴, 𝐵, 𝐶}) = (♯‘({𝐴, 𝐵} ∪ {𝐶}))
38 df-3 12200 . . . 4 3 = (2 + 1)
3935, 37, 383eqtr4g 2793 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝑊) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (♯‘{𝐴, 𝐵, 𝐶}) = 3)
4039ex 412 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ((𝐴𝐵𝐵𝐶𝐶𝐴) → (♯‘{𝐴, 𝐵, 𝐶}) = 3))
41 nne 2933 . . . . . . 7 𝐴𝐵𝐴 = 𝐵)
42 hashprlei 14382 . . . . . . . . 9 ({𝐵, 𝐶} ∈ Fin ∧ (♯‘{𝐵, 𝐶}) ≤ 2)
43 prfi 9219 . . . . . . . . . . . . . 14 {𝐵, 𝐶} ∈ Fin
44 hashcl 14270 . . . . . . . . . . . . . . 15 ({𝐵, 𝐶} ∈ Fin → (♯‘{𝐵, 𝐶}) ∈ ℕ0)
4544nn0zd 12504 . . . . . . . . . . . . . 14 ({𝐵, 𝐶} ∈ Fin → (♯‘{𝐵, 𝐶}) ∈ ℤ)
4643, 45ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐵, 𝐶}) ∈ ℤ
47 2z 12514 . . . . . . . . . . . . 13 2 ∈ ℤ
48 zleltp1 12533 . . . . . . . . . . . . . 14 (((♯‘{𝐵, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐵, 𝐶}) ≤ 2 ↔ (♯‘{𝐵, 𝐶}) < (2 + 1)))
49 2p1e3 12273 . . . . . . . . . . . . . . . . 17 (2 + 1) = 3
5049a1i 11 . . . . . . . . . . . . . . . 16 (((♯‘{𝐵, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → (2 + 1) = 3)
5150breq2d 5107 . . . . . . . . . . . . . . 15 (((♯‘{𝐵, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐵, 𝐶}) < (2 + 1) ↔ (♯‘{𝐵, 𝐶}) < 3))
5251biimpd 229 . . . . . . . . . . . . . 14 (((♯‘{𝐵, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐵, 𝐶}) < (2 + 1) → (♯‘{𝐵, 𝐶}) < 3))
5348, 52sylbid 240 . . . . . . . . . . . . 13 (((♯‘{𝐵, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐵, 𝐶}) ≤ 2 → (♯‘{𝐵, 𝐶}) < 3))
5446, 47, 53mp2an 692 . . . . . . . . . . . 12 ((♯‘{𝐵, 𝐶}) ≤ 2 → (♯‘{𝐵, 𝐶}) < 3)
5544nn0red 12454 . . . . . . . . . . . . . 14 ({𝐵, 𝐶} ∈ Fin → (♯‘{𝐵, 𝐶}) ∈ ℝ)
5643, 55ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐵, 𝐶}) ∈ ℝ
57 3re 12216 . . . . . . . . . . . . 13 3 ∈ ℝ
5856, 57ltnei 11248 . . . . . . . . . . . 12 ((♯‘{𝐵, 𝐶}) < 3 → 3 ≠ (♯‘{𝐵, 𝐶}))
5954, 58syl 17 . . . . . . . . . . 11 ((♯‘{𝐵, 𝐶}) ≤ 2 → 3 ≠ (♯‘{𝐵, 𝐶}))
6059necomd 2984 . . . . . . . . . 10 ((♯‘{𝐵, 𝐶}) ≤ 2 → (♯‘{𝐵, 𝐶}) ≠ 3)
6160adantl 481 . . . . . . . . 9 (({𝐵, 𝐶} ∈ Fin ∧ (♯‘{𝐵, 𝐶}) ≤ 2) → (♯‘{𝐵, 𝐶}) ≠ 3)
6242, 61mp1i 13 . . . . . . . 8 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐵, 𝐶}) ≠ 3)
63 tpeq1 4696 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐵, 𝐶})
64 tpidm12 4709 . . . . . . . . . . 11 {𝐵, 𝐵, 𝐶} = {𝐵, 𝐶}
6563, 64eqtr2di 2785 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐵, 𝐶} = {𝐴, 𝐵, 𝐶})
6665fveq2d 6835 . . . . . . . . 9 (𝐴 = 𝐵 → (♯‘{𝐵, 𝐶}) = (♯‘{𝐴, 𝐵, 𝐶}))
6766neeq1d 2988 . . . . . . . 8 (𝐴 = 𝐵 → ((♯‘{𝐵, 𝐶}) ≠ 3 ↔ (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
6862, 67imbitrid 244 . . . . . . 7 (𝐴 = 𝐵 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
6941, 68sylbi 217 . . . . . 6 𝐴𝐵 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
70 hashprlei 14382 . . . . . . . . 9 ({𝐴, 𝐶} ∈ Fin ∧ (♯‘{𝐴, 𝐶}) ≤ 2)
71 prfi 9219 . . . . . . . . . . . . . 14 {𝐴, 𝐶} ∈ Fin
72 hashcl 14270 . . . . . . . . . . . . . . 15 ({𝐴, 𝐶} ∈ Fin → (♯‘{𝐴, 𝐶}) ∈ ℕ0)
7372nn0zd 12504 . . . . . . . . . . . . . 14 ({𝐴, 𝐶} ∈ Fin → (♯‘{𝐴, 𝐶}) ∈ ℤ)
7471, 73ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐴, 𝐶}) ∈ ℤ
75 zleltp1 12533 . . . . . . . . . . . . . 14 (((♯‘{𝐴, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐶}) ≤ 2 ↔ (♯‘{𝐴, 𝐶}) < (2 + 1)))
7649a1i 11 . . . . . . . . . . . . . . . 16 (((♯‘{𝐴, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → (2 + 1) = 3)
7776breq2d 5107 . . . . . . . . . . . . . . 15 (((♯‘{𝐴, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐶}) < (2 + 1) ↔ (♯‘{𝐴, 𝐶}) < 3))
7877biimpd 229 . . . . . . . . . . . . . 14 (((♯‘{𝐴, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐶}) < (2 + 1) → (♯‘{𝐴, 𝐶}) < 3))
7975, 78sylbid 240 . . . . . . . . . . . . 13 (((♯‘{𝐴, 𝐶}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐶}) ≤ 2 → (♯‘{𝐴, 𝐶}) < 3))
8074, 47, 79mp2an 692 . . . . . . . . . . . 12 ((♯‘{𝐴, 𝐶}) ≤ 2 → (♯‘{𝐴, 𝐶}) < 3)
8172nn0red 12454 . . . . . . . . . . . . . 14 ({𝐴, 𝐶} ∈ Fin → (♯‘{𝐴, 𝐶}) ∈ ℝ)
8271, 81ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐴, 𝐶}) ∈ ℝ
8382, 57ltnei 11248 . . . . . . . . . . . 12 ((♯‘{𝐴, 𝐶}) < 3 → 3 ≠ (♯‘{𝐴, 𝐶}))
8480, 83syl 17 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐶}) ≤ 2 → 3 ≠ (♯‘{𝐴, 𝐶}))
8584necomd 2984 . . . . . . . . . 10 ((♯‘{𝐴, 𝐶}) ≤ 2 → (♯‘{𝐴, 𝐶}) ≠ 3)
8685adantl 481 . . . . . . . . 9 (({𝐴, 𝐶} ∈ Fin ∧ (♯‘{𝐴, 𝐶}) ≤ 2) → (♯‘{𝐴, 𝐶}) ≠ 3)
8770, 86mp1i 13 . . . . . . . 8 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐶}) ≠ 3)
88 tpeq2 4697 . . . . . . . . . . 11 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐶})
89 tpidm23 4711 . . . . . . . . . . 11 {𝐴, 𝐶, 𝐶} = {𝐴, 𝐶}
9088, 89eqtr2di 2785 . . . . . . . . . 10 (𝐵 = 𝐶 → {𝐴, 𝐶} = {𝐴, 𝐵, 𝐶})
9190fveq2d 6835 . . . . . . . . 9 (𝐵 = 𝐶 → (♯‘{𝐴, 𝐶}) = (♯‘{𝐴, 𝐵, 𝐶}))
9291neeq1d 2988 . . . . . . . 8 (𝐵 = 𝐶 → ((♯‘{𝐴, 𝐶}) ≠ 3 ↔ (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
9387, 92imbitrid 244 . . . . . . 7 (𝐵 = 𝐶 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
946, 93sylbi 217 . . . . . 6 𝐵𝐶 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
95 hashprlei 14382 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin ∧ (♯‘{𝐴, 𝐵}) ≤ 2)
96 hashcl 14270 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ∈ Fin → (♯‘{𝐴, 𝐵}) ∈ ℕ0)
9796nn0zd 12504 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ∈ Fin → (♯‘{𝐴, 𝐵}) ∈ ℤ)
982, 97ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐴, 𝐵}) ∈ ℤ
99 zleltp1 12533 . . . . . . . . . . . . . 14 (((♯‘{𝐴, 𝐵}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐵}) ≤ 2 ↔ (♯‘{𝐴, 𝐵}) < (2 + 1)))
10049a1i 11 . . . . . . . . . . . . . . . 16 (((♯‘{𝐴, 𝐵}) ∈ ℤ ∧ 2 ∈ ℤ) → (2 + 1) = 3)
101100breq2d 5107 . . . . . . . . . . . . . . 15 (((♯‘{𝐴, 𝐵}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐵}) < (2 + 1) ↔ (♯‘{𝐴, 𝐵}) < 3))
102101biimpd 229 . . . . . . . . . . . . . 14 (((♯‘{𝐴, 𝐵}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐵}) < (2 + 1) → (♯‘{𝐴, 𝐵}) < 3))
10399, 102sylbid 240 . . . . . . . . . . . . 13 (((♯‘{𝐴, 𝐵}) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘{𝐴, 𝐵}) ≤ 2 → (♯‘{𝐴, 𝐵}) < 3))
10498, 47, 103mp2an 692 . . . . . . . . . . . 12 ((♯‘{𝐴, 𝐵}) ≤ 2 → (♯‘{𝐴, 𝐵}) < 3)
10596nn0red 12454 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ∈ Fin → (♯‘{𝐴, 𝐵}) ∈ ℝ)
1062, 105ax-mp 5 . . . . . . . . . . . . 13 (♯‘{𝐴, 𝐵}) ∈ ℝ
107106, 57ltnei 11248 . . . . . . . . . . . 12 ((♯‘{𝐴, 𝐵}) < 3 → 3 ≠ (♯‘{𝐴, 𝐵}))
108104, 107syl 17 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐵}) ≤ 2 → 3 ≠ (♯‘{𝐴, 𝐵}))
109108necomd 2984 . . . . . . . . . 10 ((♯‘{𝐴, 𝐵}) ≤ 2 → (♯‘{𝐴, 𝐵}) ≠ 3)
110109adantl 481 . . . . . . . . 9 (({𝐴, 𝐵} ∈ Fin ∧ (♯‘{𝐴, 𝐵}) ≤ 2) → (♯‘{𝐴, 𝐵}) ≠ 3)
11195, 110mp1i 13 . . . . . . . 8 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵}) ≠ 3)
112 tpeq3 4698 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐴})
113 tpidm13 4710 . . . . . . . . . . 11 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
114112, 113eqtr2di 2785 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐵, 𝐶})
115114fveq2d 6835 . . . . . . . . 9 (𝐶 = 𝐴 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴, 𝐵, 𝐶}))
116115neeq1d 2988 . . . . . . . 8 (𝐶 = 𝐴 → ((♯‘{𝐴, 𝐵}) ≠ 3 ↔ (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
117111, 116imbitrid 244 . . . . . . 7 (𝐶 = 𝐴 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
1189, 117sylbi 217 . . . . . 6 𝐶𝐴 → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
11969, 94, 1183jaoi 1430 . . . . 5 ((¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴) → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
12021, 119sylbi 217 . . . 4 (¬ (𝐴𝐵𝐵𝐶𝐶𝐴) → ((𝐴𝑈𝐵𝑉𝐶𝑊) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
121120com12 32 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (¬ (𝐴𝐵𝐵𝐶𝐶𝐴) → (♯‘{𝐴, 𝐵, 𝐶}) ≠ 3))
122121necon4bd 2949 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ((♯‘{𝐴, 𝐵, 𝐶}) = 3 → (𝐴𝐵𝐵𝐶𝐶𝐴)))
12340, 122impbid 212 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (♯‘{𝐴, 𝐵, 𝐶}) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cun 3896  {csn 4577  {cpr 4579  {ctp 4581   class class class wbr 5095  cfv 6489  (class class class)co 7355  Fincfn 8879  cr 11016  1c1 11018   + caddc 11020   < clt 11157  cle 11158  2c2 12191  3c3 12192  cz 12479  chash 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245
This theorem is referenced by:  hash7g  14400  hashge3el3dif  14401  konigsberglem5  30257  poimirlem9  37742  usgrgrtrirex  48112  gpg3nbgrvtx0  48238  gpg3nbgrvtx0ALT  48239  gpg3nbgrvtx1  48240
  Copyright terms: Public domain W3C validator