MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tprot Structured version   Visualization version   GIF version

Theorem tprot 4703
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tprot {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}

Proof of Theorem tprot
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3orrot 1091 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴))
21abbii 2796 . 2 {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴)}
3 dftp2 4645 . 2 {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}
4 dftp2 4645 . 2 {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶𝑥 = 𝐴)}
52, 3, 43eqtr4i 2762 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  w3o 1085   = wceq 1540  {cab 2707  {ctp 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-sn 4580  df-pr 4582  df-tp 4584
This theorem is referenced by:  tpcomb  4705  tpass  4706  tpidm13  4710  tpidm23  4711  tpprceq3  4758  fvtp2  7136  fvtp3  7137  fvtp2g  7139  fvtp3g  7140  f13dfv  7215  en3lplem2  9528  estrres  18063  nb3grprlem2  29344  nb3grpr  29345  nb3grpr2  29346  nb3gr2nb  29347  cplgr3v  29398  frgr3v  30237  1to3vfriswmgr  30242  tpssbd  32502  tpsscd  32503  dvh4dimN  41426  en3lplem2VD  44817
  Copyright terms: Public domain W3C validator