Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tprot | Structured version Visualization version GIF version |
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orrot 1089 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
2 | 1 | abbii 2823 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
3 | dftp2 4587 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
4 | dftp2 4587 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
5 | 2, 3, 4 | 3eqtr4i 2791 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1083 = wceq 1538 {cab 2735 {ctp 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-sn 4526 df-pr 4528 df-tp 4530 |
This theorem is referenced by: tpcomb 4647 tpass 4648 tpidm13 4652 tpidm23 4653 tpprceq3 4697 fvtp2 6954 fvtp3 6955 fvtp2g 6957 fvtp3g 6958 f13dfv 7028 en3lplem2 9114 estrres 17460 nb3grprlem2 27275 nb3grpr 27276 nb3grpr2 27277 nb3gr2nb 27278 cplgr3v 27329 frgr3v 28164 1to3vfriswmgr 28169 dvh4dimN 39049 en3lplem2VD 41951 |
Copyright terms: Public domain | W3C validator |