| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tprot | Structured version Visualization version GIF version | ||
| Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orrot 1091 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
| 2 | 1 | abbii 2802 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
| 3 | dftp2 4667 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 4 | dftp2 4667 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
| 5 | 2, 3, 4 | 3eqtr4i 2768 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 {cab 2713 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: tpcomb 4727 tpass 4728 tpidm13 4732 tpidm23 4733 tpprceq3 4780 fvtp2 7188 fvtp3 7189 fvtp2g 7191 fvtp3g 7192 f13dfv 7267 en3lplem2 9627 estrres 18151 nb3grprlem2 29360 nb3grpr 29361 nb3grpr2 29362 nb3gr2nb 29363 cplgr3v 29414 frgr3v 30256 1to3vfriswmgr 30261 tpssbd 32521 tpsscd 32522 dvh4dimN 41466 en3lplem2VD 44868 |
| Copyright terms: Public domain | W3C validator |