| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tprot | Structured version Visualization version GIF version | ||
| Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orrot 1091 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
| 2 | 1 | abbii 2796 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
| 3 | dftp2 4645 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 4 | dftp2 4645 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
| 5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 {cab 2707 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: tpcomb 4705 tpass 4706 tpidm13 4710 tpidm23 4711 tpprceq3 4758 fvtp2 7136 fvtp3 7137 fvtp2g 7139 fvtp3g 7140 f13dfv 7215 en3lplem2 9528 estrres 18063 nb3grprlem2 29344 nb3grpr 29345 nb3grpr2 29346 nb3gr2nb 29347 cplgr3v 29398 frgr3v 30237 1to3vfriswmgr 30242 tpssbd 32502 tpsscd 32503 dvh4dimN 41426 en3lplem2VD 44817 |
| Copyright terms: Public domain | W3C validator |