| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tprot | Structured version Visualization version GIF version | ||
| Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orrot 1091 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
| 2 | 1 | abbii 2798 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
| 3 | dftp2 4644 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 4 | dftp2 4644 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
| 5 | 2, 3, 4 | 3eqtr4i 2764 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1541 {cab 2709 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: tpcomb 4704 tpass 4705 tpidm13 4709 tpidm23 4710 tpprceq3 4756 fvtp2 7130 fvtp3 7131 fvtp2g 7133 fvtp3g 7134 f13dfv 7208 en3lplem2 9503 estrres 18042 ex-chn2 18541 nb3grprlem2 29357 nb3grpr 29358 nb3grpr2 29359 nb3gr2nb 29360 cplgr3v 29411 frgr3v 30250 1to3vfriswmgr 30255 tpssbd 32515 tpsscd 32516 dvh4dimN 41485 en3lplem2VD 44875 |
| Copyright terms: Public domain | W3C validator |