Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tprot | Structured version Visualization version GIF version |
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orrot 1090 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
2 | 1 | abbii 2809 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
3 | dftp2 4622 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
4 | dftp2 4622 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1539 {cab 2715 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: tpcomb 4684 tpass 4685 tpidm13 4689 tpidm23 4690 tpprceq3 4734 fvtp2 7053 fvtp3 7054 fvtp2g 7056 fvtp3g 7057 f13dfv 7127 en3lplem2 9301 estrres 17772 nb3grprlem2 27651 nb3grpr 27652 nb3grpr2 27653 nb3gr2nb 27654 cplgr3v 27705 frgr3v 28540 1to3vfriswmgr 28545 dvh4dimN 39388 en3lplem2VD 42353 |
Copyright terms: Public domain | W3C validator |