| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpintrreld | Structured version Visualization version GIF version | ||
| Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xpintrreld.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| xpintrreld.s | ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) |
| Ref | Expression |
|---|---|
| xpintrreld | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpintrreld.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
| 2 | xptrrel 14879 | . . 3 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 4 | xpintrreld.s | . 2 ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) | |
| 5 | 1, 3, 4 | trrelind 43677 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3899 ⊆ wss 3900 × cxp 5612 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: restrreld 43679 |
| Copyright terms: Public domain | W3C validator |