Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpintrreld Structured version   Visualization version   GIF version

Theorem xpintrreld 43773
Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
xpintrreld.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
xpintrreld.s (𝜑𝑆 = (𝑅 ∩ (𝐴 × 𝐵)))
Assertion
Ref Expression
xpintrreld (𝜑 → (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem xpintrreld
StepHypRef Expression
1 xpintrreld.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 xptrrel 14897 . . 3 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
32a1i 11 . 2 (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
4 xpintrreld.s . 2 (𝜑𝑆 = (𝑅 ∩ (𝐴 × 𝐵)))
51, 3, 4trrelind 43772 1 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3898  wss 3899   × cxp 5619  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633
This theorem is referenced by:  restrreld  43774
  Copyright terms: Public domain W3C validator