| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpintrreld | Structured version Visualization version GIF version | ||
| Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| xpintrreld.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| xpintrreld.s | ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) |
| Ref | Expression |
|---|---|
| xpintrreld | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpintrreld.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
| 2 | xptrrel 14946 | . . 3 ⊢ ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)) |
| 4 | xpintrreld.s | . 2 ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) | |
| 5 | 1, 3, 4 | trrelind 43654 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: restrreld 43656 |
| Copyright terms: Public domain | W3C validator |