Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpintrreld Structured version   Visualization version   GIF version

Theorem xpintrreld 43678
Description: The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
xpintrreld.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
xpintrreld.s (𝜑𝑆 = (𝑅 ∩ (𝐴 × 𝐵)))
Assertion
Ref Expression
xpintrreld (𝜑 → (𝑆𝑆) ⊆ 𝑆)

Proof of Theorem xpintrreld
StepHypRef Expression
1 xpintrreld.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 xptrrel 14879 . . 3 ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
32a1i 11 . 2 (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵))
4 xpintrreld.s . 2 (𝜑𝑆 = (𝑅 ∩ (𝐴 × 𝐵)))
51, 3, 4trrelind 43677 1 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3899  wss 3900   × cxp 5612  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  restrreld  43679
  Copyright terms: Public domain W3C validator