Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5599 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | 1 | ineq2i 4148 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) |
4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
5 | 4 | dmeqd 5811 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) |
6 | 5 | ineq2d 4151 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) |
7 | dm0 5826 | . . . . . 6 ⊢ dom ∅ = ∅ | |
8 | 7 | ineq2i 4148 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) |
9 | in0 4330 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | eqtri 2767 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) |
12 | 3, 6, 11 | 3eqtrd 2783 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) |
13 | 12 | coemptyd 14671 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∩ cin 3890 ∅c0 4261 ◡ccnv 5587 dom cdm 5588 ran crn 5589 ∘ ccom 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |