|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version | ||
| Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) | 
| Ref | Expression | 
|---|---|
| conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rn 5695 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | 1 | ineq2i 4216 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) | 
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) | 
| 4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
| 5 | 4 | dmeqd 5915 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) | 
| 6 | 5 | ineq2d 4219 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) | 
| 7 | dm0 5930 | . . . . . 6 ⊢ dom ∅ = ∅ | |
| 8 | 7 | ineq2i 4216 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) | 
| 9 | in0 4394 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
| 10 | 8, 9 | eqtri 2764 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ | 
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) | 
| 12 | 3, 6, 11 | 3eqtrd 2780 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) | 
| 13 | 12 | coemptyd 15019 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∩ cin 3949 ∅c0 4332 ◡ccnv 5683 dom cdm 5684 ran crn 5685 ∘ ccom 5688 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |