![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5711 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | 1 | ineq2i 4238 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) |
4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
5 | 4 | dmeqd 5930 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) |
6 | 5 | ineq2d 4241 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) |
7 | dm0 5945 | . . . . . 6 ⊢ dom ∅ = ∅ | |
8 | 7 | ineq2i 4238 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) |
9 | in0 4418 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | eqtri 2768 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) |
12 | 3, 6, 11 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) |
13 | 12 | coemptyd 15028 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 ∅c0 4352 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |