Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel2d Structured version   Visualization version   GIF version

Theorem conrel2d 42717
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a (𝜑𝐴 = ∅)
Assertion
Ref Expression
conrel2d (𝜑 → (𝐵𝐴) = ∅)

Proof of Theorem conrel2d
StepHypRef Expression
1 df-rn 5687 . . . . 5 ran 𝐴 = dom 𝐴
21ineq2i 4209 . . . 4 (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom 𝐴)
32a1i 11 . . 3 (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom 𝐴))
4 conrel1d.a . . . . 5 (𝜑𝐴 = ∅)
54dmeqd 5905 . . . 4 (𝜑 → dom 𝐴 = dom ∅)
65ineq2d 4212 . . 3 (𝜑 → (dom 𝐵 ∩ dom 𝐴) = (dom 𝐵 ∩ dom ∅))
7 dm0 5920 . . . . . 6 dom ∅ = ∅
87ineq2i 4209 . . . . 5 (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅)
9 in0 4391 . . . . 5 (dom 𝐵 ∩ ∅) = ∅
108, 9eqtri 2760 . . . 4 (dom 𝐵 ∩ dom ∅) = ∅
1110a1i 11 . . 3 (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅)
123, 6, 113eqtrd 2776 . 2 (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅)
1312coemptyd 14930 1 (𝜑 → (𝐵𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3947  c0 4322  ccnv 5675  dom cdm 5676  ran crn 5677  ccom 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator