| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version | ||
| Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
| Ref | Expression |
|---|---|
| conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5649 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | 1 | ineq2i 4180 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) |
| 4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
| 5 | 4 | dmeqd 5869 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) |
| 6 | 5 | ineq2d 4183 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) |
| 7 | dm0 5884 | . . . . . 6 ⊢ dom ∅ = ∅ | |
| 8 | 7 | ineq2i 4180 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) |
| 9 | in0 4358 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
| 10 | 8, 9 | eqtri 2752 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) |
| 12 | 3, 6, 11 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) |
| 13 | 12 | coemptyd 14945 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ∅c0 4296 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |