![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5687 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | 1 | ineq2i 4209 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) |
4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
5 | 4 | dmeqd 5905 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) |
6 | 5 | ineq2d 4212 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) |
7 | dm0 5920 | . . . . . 6 ⊢ dom ∅ = ∅ | |
8 | 7 | ineq2i 4209 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) |
9 | in0 4391 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | eqtri 2760 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) |
12 | 3, 6, 11 | 3eqtrd 2776 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) |
13 | 12 | coemptyd 14930 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∩ cin 3947 ∅c0 4322 ◡ccnv 5675 dom cdm 5676 ran crn 5677 ∘ ccom 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |