![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel2d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel2d | ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5418 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | 1 | ineq2i 4073 | . . . 4 ⊢ (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom ◡𝐴)) |
4 | conrel1d.a | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ∅) | |
5 | 4 | dmeqd 5624 | . . . 4 ⊢ (𝜑 → dom ◡𝐴 = dom ∅) |
6 | 5 | ineq2d 4076 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ◡𝐴) = (dom 𝐵 ∩ dom ∅)) |
7 | dm0 5637 | . . . . . 6 ⊢ dom ∅ = ∅ | |
8 | 7 | ineq2i 4073 | . . . . 5 ⊢ (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅) |
9 | in0 4231 | . . . . 5 ⊢ (dom 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | eqtri 2802 | . . . 4 ⊢ (dom 𝐵 ∩ dom ∅) = ∅ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅) |
12 | 3, 6, 11 | 3eqtrd 2818 | . 2 ⊢ (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅) |
13 | 12 | coemptyd 14200 | 1 ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∩ cin 3828 ∅c0 4178 ◡ccnv 5406 dom cdm 5407 ran crn 5408 ∘ ccom 5411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |