Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel2d Structured version   Visualization version   GIF version

Theorem conrel2d 43660
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a (𝜑𝐴 = ∅)
Assertion
Ref Expression
conrel2d (𝜑 → (𝐵𝐴) = ∅)

Proof of Theorem conrel2d
StepHypRef Expression
1 df-rn 5652 . . . . 5 ran 𝐴 = dom 𝐴
21ineq2i 4183 . . . 4 (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom 𝐴)
32a1i 11 . . 3 (𝜑 → (dom 𝐵 ∩ ran 𝐴) = (dom 𝐵 ∩ dom 𝐴))
4 conrel1d.a . . . . 5 (𝜑𝐴 = ∅)
54dmeqd 5872 . . . 4 (𝜑 → dom 𝐴 = dom ∅)
65ineq2d 4186 . . 3 (𝜑 → (dom 𝐵 ∩ dom 𝐴) = (dom 𝐵 ∩ dom ∅))
7 dm0 5887 . . . . . 6 dom ∅ = ∅
87ineq2i 4183 . . . . 5 (dom 𝐵 ∩ dom ∅) = (dom 𝐵 ∩ ∅)
9 in0 4361 . . . . 5 (dom 𝐵 ∩ ∅) = ∅
108, 9eqtri 2753 . . . 4 (dom 𝐵 ∩ dom ∅) = ∅
1110a1i 11 . . 3 (𝜑 → (dom 𝐵 ∩ dom ∅) = ∅)
123, 6, 113eqtrd 2769 . 2 (𝜑 → (dom 𝐵 ∩ ran 𝐴) = ∅)
1312coemptyd 14952 1 (𝜑 → (𝐵𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3916  c0 4299  ccnv 5640  dom cdm 5641  ran crn 5642  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator