![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4260 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: frrlem12 8338 frrlem13 8339 mreexexlem3d 17704 isacs1i 17715 rescabs 17896 rescabsOLD 17897 funcres2c 17968 lsmmod 19717 gsumzres 19951 gsumzsubmcl 19960 gsum2d 20014 issubdrg 20803 lspdisj 21150 mplind 22117 ntrin 23090 elcls 23102 neitr 23209 restcls 23210 lmss 23327 xkoinjcn 23716 trfg 23920 trust 24259 utoptop 24264 restutop 24267 isngp2 24631 lebnumii 25017 causs 25351 dvreslem 25964 c1lip3 26058 ssjo 31479 dmdbr5 32340 mdslj2i 32352 mdsl2bi 32355 mdslmd1lem2 32358 mdsymlem5 32439 difininv 32547 idlsrgmulrssin 33506 bnj1286 34995 mclsind 35538 neiin 36298 topmeet 36330 fnemeet2 36333 bj-elpwg 37018 bj-restpw 37058 bj-restb 37060 bj-restuni2 37064 idresssidinxp 38264 pmod1i 39805 dihmeetlem1N 41247 dihglblem5apreN 41248 dochdmj1 41347 mapdin 41619 baerlem3lem2 41667 baerlem5alem2 41668 baerlem5blem2 41669 trrelind 43627 isotone2 44011 nzin 44287 inmap 45116 islptre 45540 limccog 45541 limcresiooub 45563 limcresioolb 45564 limsupresxr 45687 liminfresxr 45688 liminfvalxr 45704 fourierdlem48 46075 fourierdlem49 46076 fourierdlem113 46140 pimiooltgt 46631 pimdecfgtioc 46636 pimincfltioc 46637 pimdecfgtioo 46638 pimincfltioo 46639 sssmf 46659 smflimlem2 46693 smfsuplem1 46732 iscnrm3llem2 48630 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |