| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4202 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: frrlem12 8276 frrlem13 8277 mreexexlem3d 17607 isacs1i 17618 rescabs 17795 funcres2c 17865 lsmmod 19605 gsumzres 19839 gsumzsubmcl 19848 gsum2d 19902 issubdrg 20689 lspdisj 21035 mplind 21977 ntrin 22948 elcls 22960 neitr 23067 restcls 23068 lmss 23185 xkoinjcn 23574 trfg 23778 trust 24117 utoptop 24122 restutop 24125 isngp2 24485 lebnumii 24865 causs 25198 dvreslem 25810 c1lip3 25904 ssjo 31376 dmdbr5 32237 mdslj2i 32249 mdsl2bi 32252 mdslmd1lem2 32255 mdsymlem5 32336 difininv 32446 idlsrgmulrssin 33484 bnj1286 35009 mclsind 35557 neiin 36320 topmeet 36352 fnemeet2 36355 bj-elpwg 37040 bj-restpw 37080 bj-restb 37082 bj-restuni2 37086 idresssidinxp 38296 pmod1i 39842 dihmeetlem1N 41284 dihglblem5apreN 41285 dochdmj1 41384 mapdin 41656 baerlem3lem2 41704 baerlem5alem2 41705 baerlem5blem2 41706 trrelind 43654 isotone2 44038 nzin 44307 inmap 45203 islptre 45617 limccog 45618 limcresiooub 45640 limcresioolb 45641 limsupresxr 45764 liminfresxr 45765 liminfvalxr 45781 fourierdlem48 46152 fourierdlem49 46153 fourierdlem113 46217 pimiooltgt 46708 pimdecfgtioc 46713 pimincfltioc 46714 pimdecfgtioo 46715 pimincfltioo 46716 sssmf 46736 smflimlem2 46770 smfsuplem1 46809 iscnrm3llem2 48938 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |