| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4214 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: frrlem12 8296 frrlem13 8297 mreexexlem3d 17658 isacs1i 17669 rescabs 17846 funcres2c 17916 lsmmod 19656 gsumzres 19890 gsumzsubmcl 19899 gsum2d 19953 issubdrg 20740 lspdisj 21086 mplind 22028 ntrin 22999 elcls 23011 neitr 23118 restcls 23119 lmss 23236 xkoinjcn 23625 trfg 23829 trust 24168 utoptop 24173 restutop 24176 isngp2 24536 lebnumii 24916 causs 25250 dvreslem 25862 c1lip3 25956 ssjo 31428 dmdbr5 32289 mdslj2i 32301 mdsl2bi 32304 mdslmd1lem2 32307 mdsymlem5 32388 difininv 32498 idlsrgmulrssin 33528 bnj1286 35050 mclsind 35592 neiin 36350 topmeet 36382 fnemeet2 36385 bj-elpwg 37070 bj-restpw 37110 bj-restb 37112 bj-restuni2 37116 idresssidinxp 38326 pmod1i 39867 dihmeetlem1N 41309 dihglblem5apreN 41310 dochdmj1 41409 mapdin 41681 baerlem3lem2 41729 baerlem5alem2 41730 baerlem5blem2 41731 trrelind 43689 isotone2 44073 nzin 44342 inmap 45233 islptre 45648 limccog 45649 limcresiooub 45671 limcresioolb 45672 limsupresxr 45795 liminfresxr 45796 liminfvalxr 45812 fourierdlem48 46183 fourierdlem49 46184 fourierdlem113 46248 pimiooltgt 46739 pimdecfgtioc 46744 pimincfltioc 46745 pimdecfgtioo 46746 pimincfltioo 46747 sssmf 46767 smflimlem2 46801 smfsuplem1 46840 iscnrm3llem2 48924 setrec2fun 49556 |
| Copyright terms: Public domain | W3C validator |