| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4192 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: frrlem12 8237 frrlem13 8238 mreexexlem3d 17570 isacs1i 17581 rescabs 17758 funcres2c 17828 lsmmod 19572 gsumzres 19806 gsumzsubmcl 19815 gsum2d 19869 issubdrg 20683 lspdisj 21050 mplind 21993 ntrin 22964 elcls 22976 neitr 23083 restcls 23084 lmss 23201 xkoinjcn 23590 trfg 23794 trust 24133 utoptop 24138 restutop 24141 isngp2 24501 lebnumii 24881 causs 25214 dvreslem 25826 c1lip3 25920 ssjo 31409 dmdbr5 32270 mdslj2i 32282 mdsl2bi 32285 mdslmd1lem2 32288 mdsymlem5 32369 difininv 32479 idlsrgmulrssin 33460 bnj1286 34985 mclsind 35542 neiin 36305 topmeet 36337 fnemeet2 36340 bj-elpwg 37025 bj-restpw 37065 bj-restb 37067 bj-restuni2 37071 idresssidinxp 38281 pmod1i 39827 dihmeetlem1N 41269 dihglblem5apreN 41270 dochdmj1 41369 mapdin 41641 baerlem3lem2 41689 baerlem5alem2 41690 baerlem5blem2 41691 trrelind 43638 isotone2 44022 nzin 44291 inmap 45187 islptre 45601 limccog 45602 limcresiooub 45624 limcresioolb 45625 limsupresxr 45748 liminfresxr 45749 liminfvalxr 45765 fourierdlem48 46136 fourierdlem49 46137 fourierdlem113 46201 pimiooltgt 46692 pimdecfgtioc 46697 pimincfltioc 46698 pimdecfgtioo 46699 pimincfltioo 46700 sssmf 46720 smflimlem2 46754 smfsuplem1 46793 iscnrm3llem2 48935 setrec2fun 49678 |
| Copyright terms: Public domain | W3C validator |