| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4205 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: frrlem12 8279 frrlem13 8280 mreexexlem3d 17614 isacs1i 17625 rescabs 17802 funcres2c 17872 lsmmod 19612 gsumzres 19846 gsumzsubmcl 19855 gsum2d 19909 issubdrg 20696 lspdisj 21042 mplind 21984 ntrin 22955 elcls 22967 neitr 23074 restcls 23075 lmss 23192 xkoinjcn 23581 trfg 23785 trust 24124 utoptop 24129 restutop 24132 isngp2 24492 lebnumii 24872 causs 25205 dvreslem 25817 c1lip3 25911 ssjo 31383 dmdbr5 32244 mdslj2i 32256 mdsl2bi 32259 mdslmd1lem2 32262 mdsymlem5 32343 difininv 32453 idlsrgmulrssin 33491 bnj1286 35016 mclsind 35564 neiin 36327 topmeet 36359 fnemeet2 36362 bj-elpwg 37047 bj-restpw 37087 bj-restb 37089 bj-restuni2 37093 idresssidinxp 38303 pmod1i 39849 dihmeetlem1N 41291 dihglblem5apreN 41292 dochdmj1 41391 mapdin 41663 baerlem3lem2 41711 baerlem5alem2 41712 baerlem5blem2 41713 trrelind 43661 isotone2 44045 nzin 44314 inmap 45210 islptre 45624 limccog 45625 limcresiooub 45647 limcresioolb 45648 limsupresxr 45771 liminfresxr 45772 liminfvalxr 45788 fourierdlem48 46159 fourierdlem49 46160 fourierdlem113 46224 pimiooltgt 46715 pimdecfgtioc 46720 pimincfltioc 46721 pimdecfgtioo 46722 pimincfltioo 46723 sssmf 46743 smflimlem2 46777 smfsuplem1 46816 iscnrm3llem2 48942 setrec2fun 49685 |
| Copyright terms: Public domain | W3C validator |