![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4246 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3961 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 |
This theorem is referenced by: frrlem12 8320 frrlem13 8321 mreexexlem3d 17690 isacs1i 17701 rescabs 17882 rescabsOLD 17883 funcres2c 17954 lsmmod 19707 gsumzres 19941 gsumzsubmcl 19950 gsum2d 20004 issubdrg 20797 lspdisj 21144 mplind 22111 ntrin 23084 elcls 23096 neitr 23203 restcls 23204 lmss 23321 xkoinjcn 23710 trfg 23914 trust 24253 utoptop 24258 restutop 24261 isngp2 24625 lebnumii 25011 causs 25345 dvreslem 25958 c1lip3 26052 ssjo 31475 dmdbr5 32336 mdslj2i 32348 mdsl2bi 32351 mdslmd1lem2 32354 mdsymlem5 32435 difininv 32544 idlsrgmulrssin 33520 bnj1286 35011 mclsind 35554 neiin 36314 topmeet 36346 fnemeet2 36349 bj-elpwg 37034 bj-restpw 37074 bj-restb 37076 bj-restuni2 37080 idresssidinxp 38289 pmod1i 39830 dihmeetlem1N 41272 dihglblem5apreN 41273 dochdmj1 41372 mapdin 41644 baerlem3lem2 41692 baerlem5alem2 41693 baerlem5blem2 41694 trrelind 43654 isotone2 44038 nzin 44313 inmap 45151 islptre 45574 limccog 45575 limcresiooub 45597 limcresioolb 45598 limsupresxr 45721 liminfresxr 45722 liminfvalxr 45738 fourierdlem48 46109 fourierdlem49 46110 fourierdlem113 46174 pimiooltgt 46665 pimdecfgtioc 46670 pimincfltioc 46671 pimdecfgtioo 46672 pimincfltioo 46673 sssmf 46693 smflimlem2 46727 smfsuplem1 46766 iscnrm3llem2 48746 setrec2fun 48922 |
Copyright terms: Public domain | W3C validator |