![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 513 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4231 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∩ cin 3948 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: frrlem12 8282 frrlem13 8283 mreexexlem3d 17590 isacs1i 17601 rescabs 17782 rescabsOLD 17783 funcres2c 17852 lsmmod 19543 gsumzres 19777 gsumzsubmcl 19786 gsum2d 19840 issubdrg 20401 lspdisj 20738 mplind 21631 ntrin 22565 elcls 22577 neitr 22684 restcls 22685 lmss 22802 xkoinjcn 23191 trfg 23395 trust 23734 utoptop 23739 restutop 23742 isngp2 24106 lebnumii 24482 causs 24815 dvreslem 25426 c1lip3 25516 ssjo 30700 dmdbr5 31561 mdslj2i 31573 mdsl2bi 31576 mdslmd1lem2 31579 mdsymlem5 31660 difininv 31755 idlsrgmulrssin 32627 bnj1286 34030 mclsind 34561 neiin 35217 topmeet 35249 fnemeet2 35252 bj-elpwg 35933 bj-restpw 35973 bj-restb 35975 bj-restuni2 35979 idresssidinxp 37177 pmod1i 38719 dihmeetlem1N 40161 dihglblem5apreN 40162 dochdmj1 40261 mapdin 40533 baerlem3lem2 40581 baerlem5alem2 40582 baerlem5blem2 40583 trrelind 42416 isotone2 42800 nzin 43077 inmap 43908 islptre 44335 limccog 44336 limcresiooub 44358 limcresioolb 44359 limsupresxr 44482 liminfresxr 44483 liminfvalxr 44499 fourierdlem48 44870 fourierdlem49 44871 fourierdlem113 44935 pimiooltgt 45426 pimdecfgtioc 45431 pimincfltioc 45432 pimdecfgtioo 45433 pimincfltioo 45434 sssmf 45454 smflimlem2 45488 smfsuplem1 45527 iscnrm3llem2 47583 setrec2fun 47737 |
Copyright terms: Public domain | W3C validator |