| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4188 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: frrlem12 8233 frrlem13 8234 mreexexlem3d 17554 isacs1i 17565 rescabs 17742 funcres2c 17812 lsmmod 19589 gsumzres 19823 gsumzsubmcl 19832 gsum2d 19886 issubdrg 20697 lspdisj 21064 mplind 22006 ntrin 22977 elcls 22989 neitr 23096 restcls 23097 lmss 23214 xkoinjcn 23603 trfg 23807 trust 24145 utoptop 24150 restutop 24153 isngp2 24513 lebnumii 24893 causs 25226 dvreslem 25838 c1lip3 25932 ssjo 31429 dmdbr5 32290 mdslj2i 32302 mdsl2bi 32305 mdslmd1lem2 32308 mdsymlem5 32389 difininv 32499 idlsrgmulrssin 33485 bnj1286 35052 mclsind 35635 neiin 36397 topmeet 36429 fnemeet2 36432 bj-elpwg 37117 bj-restpw 37157 bj-restb 37159 bj-restuni2 37163 idresssidinxp 38367 pmod1i 39968 dihmeetlem1N 41410 dihglblem5apreN 41411 dochdmj1 41510 mapdin 41782 baerlem3lem2 41830 baerlem5alem2 41831 baerlem5blem2 41832 trrelind 43783 isotone2 44167 nzin 44436 inmap 45331 islptre 45744 limccog 45745 limcresiooub 45765 limcresioolb 45766 limsupresxr 45889 liminfresxr 45890 liminfvalxr 45906 fourierdlem48 46277 fourierdlem49 46278 fourierdlem113 46342 pimiooltgt 46833 pimdecfgtioc 46838 pimincfltioc 46839 pimdecfgtioo 46840 pimincfltioo 46841 sssmf 46861 smflimlem2 46895 smfsuplem1 46934 iscnrm3llem2 49075 setrec2fun 49818 |
| Copyright terms: Public domain | W3C validator |