Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4170 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∩ cin 3891 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 |
This theorem is referenced by: frrlem12 8104 frrlem13 8105 mreexexlem3d 17353 isacs1i 17364 rescabs 17545 rescabsOLD 17546 funcres2c 17615 lsmmod 19279 gsumzres 19508 gsumzsubmcl 19517 gsum2d 19571 issubdrg 20047 lspdisj 20385 mplind 21276 ntrin 22210 elcls 22222 neitr 22329 restcls 22330 lmss 22447 xkoinjcn 22836 trfg 23040 trust 23379 utoptop 23384 restutop 23387 isngp2 23751 lebnumii 24127 causs 24460 dvreslem 25071 c1lip3 25161 ssjo 29805 dmdbr5 30666 mdslj2i 30678 mdsl2bi 30681 mdslmd1lem2 30684 mdsymlem5 30765 difininv 30860 idlsrgmulrssin 31654 bnj1286 32995 mclsind 33528 neiin 34517 topmeet 34549 fnemeet2 34552 bj-elpwg 35221 bj-restpw 35259 bj-restb 35261 bj-restuni2 35265 idresssidinxp 36440 pmod1i 37858 dihmeetlem1N 39300 dihglblem5apreN 39301 dochdmj1 39400 mapdin 39672 baerlem3lem2 39720 baerlem5alem2 39721 baerlem5blem2 39722 trrelind 41243 isotone2 41629 nzin 41906 inmap 42719 islptre 43131 limccog 43132 limcresiooub 43154 limcresioolb 43155 limsupresxr 43278 liminfresxr 43279 liminfvalxr 43295 fourierdlem48 43666 fourierdlem49 43667 fourierdlem113 43731 pimiooltgt 44216 pimdecfgtioc 44220 pimincfltioc 44221 pimdecfgtioo 44222 pimincfltioo 44223 sssmf 44242 smflimlem2 44275 smfsuplem1 44312 iscnrm3llem2 46213 setrec2fun 46367 |
Copyright terms: Public domain | W3C validator |