Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4161 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: frrlem12 8084 frrlem13 8085 mreexexlem3d 17272 isacs1i 17283 rescabs 17464 funcres2c 17533 lsmmod 19196 gsumzres 19425 gsumzsubmcl 19434 gsum2d 19488 issubdrg 19964 lspdisj 20302 mplind 21188 ntrin 22120 elcls 22132 neitr 22239 restcls 22240 lmss 22357 xkoinjcn 22746 trfg 22950 trust 23289 utoptop 23294 restutop 23297 isngp2 23659 lebnumii 24035 causs 24367 dvreslem 24978 c1lip3 25068 ssjo 29710 dmdbr5 30571 mdslj2i 30583 mdsl2bi 30586 mdslmd1lem2 30589 mdsymlem5 30670 difininv 30765 idlsrgmulrssin 31560 bnj1286 32899 mclsind 33432 neiin 34448 topmeet 34480 fnemeet2 34483 bj-elpwg 35152 bj-restpw 35190 bj-restb 35192 bj-restuni2 35196 idresssidinxp 36371 pmod1i 37789 dihmeetlem1N 39231 dihglblem5apreN 39232 dochdmj1 39331 mapdin 39603 baerlem3lem2 39651 baerlem5alem2 39652 baerlem5blem2 39653 trrelind 41162 isotone2 41548 nzin 41825 inmap 42638 islptre 43050 limccog 43051 limcresiooub 43073 limcresioolb 43074 limsupresxr 43197 liminfresxr 43198 liminfvalxr 43214 fourierdlem48 43585 fourierdlem49 43586 fourierdlem113 43650 pimiooltgt 44135 pimdecfgtioc 44139 pimincfltioc 44140 pimdecfgtioo 44141 pimincfltioo 44142 sssmf 44161 smflimlem2 44194 smfsuplem1 44231 iscnrm3llem2 46132 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |