| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4239 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3950 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-in 3958 df-ss 3968 |
| This theorem is referenced by: frrlem12 8322 frrlem13 8323 mreexexlem3d 17689 isacs1i 17700 rescabs 17877 rescabsOLD 17878 funcres2c 17948 lsmmod 19693 gsumzres 19927 gsumzsubmcl 19936 gsum2d 19990 issubdrg 20781 lspdisj 21127 mplind 22094 ntrin 23069 elcls 23081 neitr 23188 restcls 23189 lmss 23306 xkoinjcn 23695 trfg 23899 trust 24238 utoptop 24243 restutop 24246 isngp2 24610 lebnumii 24998 causs 25332 dvreslem 25944 c1lip3 26038 ssjo 31466 dmdbr5 32327 mdslj2i 32339 mdsl2bi 32342 mdslmd1lem2 32345 mdsymlem5 32426 difininv 32536 idlsrgmulrssin 33541 bnj1286 35033 mclsind 35575 neiin 36333 topmeet 36365 fnemeet2 36368 bj-elpwg 37053 bj-restpw 37093 bj-restb 37095 bj-restuni2 37099 idresssidinxp 38309 pmod1i 39850 dihmeetlem1N 41292 dihglblem5apreN 41293 dochdmj1 41392 mapdin 41664 baerlem3lem2 41712 baerlem5alem2 41713 baerlem5blem2 41714 trrelind 43678 isotone2 44062 nzin 44337 inmap 45214 islptre 45634 limccog 45635 limcresiooub 45657 limcresioolb 45658 limsupresxr 45781 liminfresxr 45782 liminfvalxr 45798 fourierdlem48 46169 fourierdlem49 46170 fourierdlem113 46234 pimiooltgt 46725 pimdecfgtioc 46730 pimincfltioc 46731 pimdecfgtioo 46732 pimincfltioo 46733 sssmf 46753 smflimlem2 46787 smfsuplem1 46826 iscnrm3llem2 48847 setrec2fun 49211 |
| Copyright terms: Public domain | W3C validator |