Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version |
Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
4 | ssin 4164 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: frrlem12 8113 frrlem13 8114 mreexexlem3d 17355 isacs1i 17366 rescabs 17547 rescabsOLD 17548 funcres2c 17617 lsmmod 19281 gsumzres 19510 gsumzsubmcl 19519 gsum2d 19573 issubdrg 20049 lspdisj 20387 mplind 21278 ntrin 22212 elcls 22224 neitr 22331 restcls 22332 lmss 22449 xkoinjcn 22838 trfg 23042 trust 23381 utoptop 23386 restutop 23389 isngp2 23753 lebnumii 24129 causs 24462 dvreslem 25073 c1lip3 25163 ssjo 29809 dmdbr5 30670 mdslj2i 30682 mdsl2bi 30685 mdslmd1lem2 30688 mdsymlem5 30769 difininv 30864 idlsrgmulrssin 31658 bnj1286 32999 mclsind 33532 neiin 34521 topmeet 34553 fnemeet2 34556 bj-elpwg 35225 bj-restpw 35263 bj-restb 35265 bj-restuni2 35269 idresssidinxp 36444 pmod1i 37862 dihmeetlem1N 39304 dihglblem5apreN 39305 dochdmj1 39404 mapdin 39676 baerlem3lem2 39724 baerlem5alem2 39725 baerlem5blem2 39726 trrelind 41273 isotone2 41659 nzin 41936 inmap 42749 islptre 43160 limccog 43161 limcresiooub 43183 limcresioolb 43184 limsupresxr 43307 liminfresxr 43308 liminfvalxr 43324 fourierdlem48 43695 fourierdlem49 43696 fourierdlem113 43760 pimiooltgt 44247 pimdecfgtioc 44252 pimincfltioc 44253 pimdecfgtioo 44254 pimincfltioo 44255 sssmf 44274 smflimlem2 44307 smfsuplem1 44344 iscnrm3llem2 46244 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |