| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssind | Structured version Visualization version GIF version | ||
| Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ssind | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssind.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssind.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶)) |
| 4 | ssin 4189 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: frrlem12 8227 frrlem13 8228 mreexexlem3d 17552 isacs1i 17563 rescabs 17740 funcres2c 17810 lsmmod 19588 gsumzres 19822 gsumzsubmcl 19831 gsum2d 19885 issubdrg 20696 lspdisj 21063 mplind 22006 ntrin 22977 elcls 22989 neitr 23096 restcls 23097 lmss 23214 xkoinjcn 23603 trfg 23807 trust 24145 utoptop 24150 restutop 24153 isngp2 24513 lebnumii 24893 causs 25226 dvreslem 25838 c1lip3 25932 ssjo 31425 dmdbr5 32286 mdslj2i 32298 mdsl2bi 32301 mdslmd1lem2 32304 mdsymlem5 32385 difininv 32495 idlsrgmulrssin 33476 bnj1286 35029 mclsind 35612 neiin 36372 topmeet 36404 fnemeet2 36407 bj-elpwg 37092 bj-restpw 37132 bj-restb 37134 bj-restuni2 37138 idresssidinxp 38348 pmod1i 39893 dihmeetlem1N 41335 dihglblem5apreN 41336 dochdmj1 41435 mapdin 41707 baerlem3lem2 41755 baerlem5alem2 41756 baerlem5blem2 41757 trrelind 43704 isotone2 44088 nzin 44357 inmap 45252 islptre 45665 limccog 45666 limcresiooub 45686 limcresioolb 45687 limsupresxr 45810 liminfresxr 45811 liminfvalxr 45827 fourierdlem48 46198 fourierdlem49 46199 fourierdlem113 46263 pimiooltgt 46754 pimdecfgtioc 46759 pimincfltioc 46760 pimdecfgtioo 46761 pimincfltioo 46762 sssmf 46782 smflimlem2 46816 smfsuplem1 46855 iscnrm3llem2 48987 setrec2fun 49730 |
| Copyright terms: Public domain | W3C validator |