MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopab Structured version   Visualization version   GIF version

Theorem unopab 5175
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}

Proof of Theorem unopab
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑦⟩))
21anbi1d 630 . . . . 5 (𝑧 = 𝑤 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
322exbidv 1926 . . . 4 (𝑧 = 𝑤 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
41anbi1d 630 . . . . 5 (𝑧 = 𝑤 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
542exbidv 1926 . . . 4 (𝑧 = 𝑤 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
63, 5unabw 4245 . . 3 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑤 ∣ (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))}
7 19.43 1884 . . . . 5 (∃𝑥(∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
8 andi 1005 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
98exbii 1849 . . . . . . 7 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ∃𝑦((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
10 19.43 1884 . . . . . . 7 (∃𝑦((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
119, 10bitr2i 275 . . . . . 6 ((∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
1211exbii 1849 . . . . 5 (∃𝑥(∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
137, 12bitr3i 276 . . . 4 ((∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
1413abbii 2806 . . 3 {𝑤 ∣ (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
156, 14eqtri 2764 . 2 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
16 df-opab 5156 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 df-opab 5156 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1816, 17uneq12i 4109 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
19 df-opab 5156 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
2015, 18, 193eqtr4i 2774 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1540  wex 1780  {cab 2713  cun 3896  cop 4580  {copab 5155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-un 3903  df-opab 5156
This theorem is referenced by:  xpundi  5687  xpundir  5688  cnvun  6082  coundi  6186  coundir  6187  mptun  6631  opsrtoslem1  21369  lgsquadlem3  26637
  Copyright terms: Public domain W3C validator