MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopab Structured version   Visualization version   GIF version

Theorem unopab 4887
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}

Proof of Theorem unopab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unab 4058 . . 3 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))}
2 19.43 1981 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3 andi 1030 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43exbii 1943 . . . . . . 7 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
5 19.43 1981 . . . . . . 7 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
64, 5bitr2i 267 . . . . . 6 ((∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
76exbii 1943 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
82, 7bitr3i 268 . . . 4 ((∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
98abbii 2882 . . 3 {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
101, 9eqtri 2787 . 2 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
11 df-opab 4872 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
12 df-opab 4872 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1311, 12uneq12i 3927 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
14 df-opab 4872 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
1510, 13, 143eqtr4i 2797 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 384  wo 873   = wceq 1652  wex 1874  {cab 2751  cun 3730  cop 4340  {copab 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-v 3352  df-un 3737  df-opab 4872
This theorem is referenced by:  xpundi  5339  xpundir  5340  cnvun  5721  coundi  5822  coundir  5823  mptun  6203  opsrtoslem1  19757  lgsquadlem3  25398  cnfinltrel  33674
  Copyright terms: Public domain W3C validator