MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopab Structured version   Visualization version   GIF version

Theorem unopab 5115
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}

Proof of Theorem unopab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unab 4204 . . 3 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))}
2 19.43 1883 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3 andi 1005 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43exbii 1849 . . . . . . 7 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
5 19.43 1883 . . . . . . 7 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
64, 5bitr2i 279 . . . . . 6 ((∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
76exbii 1849 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
82, 7bitr3i 280 . . . 4 ((∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
98abbii 2823 . . 3 {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
101, 9eqtri 2781 . 2 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
11 df-opab 5099 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
12 df-opab 5099 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1311, 12uneq12i 4068 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
14 df-opab 5099 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
1510, 13, 143eqtr4i 2791 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 399  wo 844   = wceq 1538  wex 1781  {cab 2735  cun 3858  cop 4531  {copab 5098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-un 3865  df-opab 5099
This theorem is referenced by:  xpundi  5594  xpundir  5595  cnvun  5978  coundi  6082  coundir  6083  mptun  6482  opsrtoslem1  20829  lgsquadlem3  26079
  Copyright terms: Public domain W3C validator