Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniin1 Structured version   Visualization version   GIF version

Theorem uniin1 30767
Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Assertion
Ref Expression
uniin1 𝑥𝐴 (𝑥𝐵) = ( 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniin1
StepHypRef Expression
1 iunin1 4997 . 2 𝑥𝐴 (𝑥𝐵) = ( 𝑥𝐴 𝑥𝐵)
2 uniiun 4984 . . 3 𝐴 = 𝑥𝐴 𝑥
32ineq1i 4140 . 2 ( 𝐴𝐵) = ( 𝑥𝐴 𝑥𝐵)
41, 3eqtr4i 2770 1 𝑥𝐴 (𝑥𝐵) = ( 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cin 3883   cuni 4836   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-in 3891  df-ss 3901  df-uni 4837  df-iun 4923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator