| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniin1 | Structured version Visualization version GIF version | ||
| Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| uniin1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin1 5039 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝑥 ∩ 𝐵) | |
| 2 | uniiun 5025 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 2 | ineq1i 4182 | . 2 ⊢ (∪ 𝐴 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝑥 ∩ 𝐵) |
| 4 | 1, 3 | eqtr4i 2756 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 ∪ cuni 4874 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-uni 4875 df-iun 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |