![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniin1 | Structured version Visualization version GIF version |
Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
uniin1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin1 5075 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝑥 ∩ 𝐵) | |
2 | uniiun 5061 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | ineq1i 4208 | . 2 ⊢ (∪ 𝐴 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝑥 ∩ 𝐵) |
4 | 1, 3 | eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = (∪ 𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∩ cin 3947 ∪ cuni 4908 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |