![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunin1 | Structured version Visualization version GIF version |
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5081 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 5094 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | incom 4230 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
4 | 3 | iuneq2i 5036 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
5 | incom 4230 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
6 | 1, 4, 5 | 3eqtr4i 2778 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-iun 5017 |
This theorem is referenced by: 2iunin 5099 resiun1 6029 tgrest 23188 metnrmlem3 24902 limciun 25949 uniin1 32574 disjunsn 32616 measinblem 34184 sstotbnd2 37734 subsaliuncl 46279 sge0iunmptlemre 46336 |
Copyright terms: Public domain | W3C validator |