| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunin1 | Structured version Visualization version GIF version | ||
| Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5011 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin2 5023 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | incom 4158 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
| 4 | 3 | iuneq2i 4965 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
| 5 | incom 4158 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 6 | 1, 4, 5 | 3eqtr4i 2766 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ∪ ciun 4943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-iun 4945 |
| This theorem is referenced by: 2iunin 5028 resiun1 5954 tgrest 23077 metnrmlem3 24780 limciun 25825 uniin1 32535 disjunsn 32578 measinblem 34256 sstotbnd2 37837 subsaliuncl 46483 sge0iunmptlemre 46540 |
| Copyright terms: Public domain | W3C validator |