| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunin1 | Structured version Visualization version GIF version | ||
| Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5034 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin2 5047 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | incom 4184 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
| 4 | 3 | iuneq2i 4989 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
| 5 | incom 4184 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 6 | 1, 4, 5 | 3eqtr4i 2768 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: 2iunin 5052 resiun1 5986 tgrest 23097 metnrmlem3 24801 limciun 25847 uniin1 32532 disjunsn 32575 measinblem 34251 sstotbnd2 37798 subsaliuncl 46387 sge0iunmptlemre 46444 |
| Copyright terms: Public domain | W3C validator |