MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Structured version   Visualization version   GIF version

Theorem iunin1 5095
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5081 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 5094 . 2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
2 incom 4230 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 11 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iuneq2i 5036 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 4230 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4i 2778 1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cin 3975   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-iun 5017
This theorem is referenced by:  2iunin  5099  resiun1  6029  tgrest  23188  metnrmlem3  24902  limciun  25949  uniin1  32574  disjunsn  32616  measinblem  34184  sstotbnd2  37734  subsaliuncl  46279  sge0iunmptlemre  46336
  Copyright terms: Public domain W3C validator