MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Structured version   Visualization version   GIF version

Theorem iunin1 5076
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5062 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 5075 . 2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
2 incom 4202 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 11 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iuneq2i 5019 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 4202 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4i 2768 1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  cin 3948   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-in 3956  df-ss 3966  df-iun 5000
This theorem is referenced by:  2iunin  5080  resiun1  6002  tgrest  22885  metnrmlem3  24599  limciun  25645  uniin1  32048  disjunsn  32090  measinblem  33514  sstotbnd2  36947  subsaliuncl  45374  sge0iunmptlemre  45431
  Copyright terms: Public domain W3C validator