Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniin2 Structured version   Visualization version   GIF version

Theorem uniin2 30892
Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Assertion
Ref Expression
uniin2 𝑥𝐵 (𝐴𝑥) = (𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniin2
StepHypRef Expression
1 iunin2 5000 . 2 𝑥𝐵 (𝐴𝑥) = (𝐴 𝑥𝐵 𝑥)
2 uniiun 4988 . . 3 𝐵 = 𝑥𝐵 𝑥
32ineq2i 4143 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
41, 3eqtr4i 2769 1 𝑥𝐵 (𝐴𝑥) = (𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3886   cuni 4839   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-in 3894  df-uni 4840  df-iun 4926
This theorem is referenced by:  ldgenpisyslem1  32131
  Copyright terms: Public domain W3C validator