| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniin2 | Structured version Visualization version GIF version | ||
| Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| uniin2 | ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin2 5019 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥) | |
| 2 | uniiun 5007 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 3 | 2 | ineq2i 4167 | . 2 ⊢ (𝐴 ∩ ∪ 𝐵) = (𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥) |
| 4 | 1, 3 | eqtr4i 2757 | 1 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3901 ∪ cuni 4859 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-in 3909 df-uni 4860 df-iun 4943 |
| This theorem is referenced by: ssdifidllem 33416 ldgenpisyslem1 34171 |
| Copyright terms: Public domain | W3C validator |