Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniin2 | Structured version Visualization version GIF version |
Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
uniin2 | ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 5000 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥) | |
2 | uniiun 4988 | . . 3 ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
3 | 2 | ineq2i 4143 | . 2 ⊢ (𝐴 ∩ ∪ 𝐵) = (𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥) |
4 | 1, 3 | eqtr4i 2769 | 1 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∩ 𝑥) = (𝐴 ∩ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 ∪ cuni 4839 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-uni 4840 df-iun 4926 |
This theorem is referenced by: ldgenpisyslem1 32131 |
Copyright terms: Public domain | W3C validator |