Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniin2 Structured version   Visualization version   GIF version

Theorem uniin2 32565
Description: Union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Assertion
Ref Expression
uniin2 𝑥𝐵 (𝐴𝑥) = (𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniin2
StepHypRef Expression
1 iunin2 5071 . 2 𝑥𝐵 (𝐴𝑥) = (𝐴 𝑥𝐵 𝑥)
2 uniiun 5058 . . 3 𝐵 = 𝑥𝐵 𝑥
32ineq2i 4217 . 2 (𝐴 𝐵) = (𝐴 𝑥𝐵 𝑥)
41, 3eqtr4i 2768 1 𝑥𝐵 (𝐴𝑥) = (𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3950   cuni 4907   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3482  df-in 3958  df-uni 4908  df-iun 4993
This theorem is referenced by:  ssdifidllem  33484  ldgenpisyslem1  34164
  Copyright terms: Public domain W3C validator