Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniinn0 Structured version   Visualization version   GIF version

Theorem uniinn0 32362
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
uniinn0 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniinn0
StepHypRef Expression
1 nne 2941 . . . 4 (¬ (𝑥𝐵) ≠ ∅ ↔ (𝑥𝐵) = ∅)
21ralbii 3090 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ∀𝑥𝐴 (𝑥𝐵) = ∅)
3 ralnex 3069 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
4 unissb 4946 . . . 4 ( 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
5 disj2 4461 . . . 4 (( 𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
6 disj2 4461 . . . . 5 ((𝑥𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵))
76ralbii 3090 . . . 4 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
84, 5, 73bitr4ri 303 . . 3 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ( 𝐴𝐵) = ∅)
92, 3, 83bitr3i 300 . 2 (¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅ ↔ ( 𝐴𝐵) = ∅)
109necon1abii 2986 1 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wne 2937  wral 3058  wrex 3067  Vcvv 3473  cdif 3946  cin 3948  wss 3949  c0 4326   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-v 3475  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4327  df-uni 4913
This theorem is referenced by:  locfinreflem  33474
  Copyright terms: Public domain W3C validator