Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniinn0 Structured version   Visualization version   GIF version

Theorem uniinn0 32551
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
uniinn0 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniinn0
StepHypRef Expression
1 nne 2940 . . . 4 (¬ (𝑥𝐵) ≠ ∅ ↔ (𝑥𝐵) = ∅)
21ralbii 3089 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ∀𝑥𝐴 (𝑥𝐵) = ∅)
3 ralnex 3068 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
4 unissb 4947 . . . 4 ( 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
5 disj2 4464 . . . 4 (( 𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
6 disj2 4464 . . . . 5 ((𝑥𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵))
76ralbii 3089 . . . 4 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
84, 5, 73bitr4ri 304 . . 3 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ( 𝐴𝐵) = ∅)
92, 3, 83bitr3i 301 . 2 (¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅ ↔ ( 𝐴𝐵) = ∅)
109necon1abii 2985 1 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1535  wne 2936  wral 3057  wrex 3066  Vcvv 3477  cdif 3960  cin 3962  wss 3963  c0 4339   cuni 4915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ne 2937  df-ral 3058  df-rex 3067  df-v 3479  df-dif 3966  df-in 3970  df-ss 3980  df-nul 4340  df-uni 4916
This theorem is referenced by:  locfinreflem  33764
  Copyright terms: Public domain W3C validator