Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniinn0 Structured version   Visualization version   GIF version

Theorem uniinn0 32551
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
uniinn0 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem uniinn0
StepHypRef Expression
1 nne 2933 . . . 4 (¬ (𝑥𝐵) ≠ ∅ ↔ (𝑥𝐵) = ∅)
21ralbii 3079 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ∀𝑥𝐴 (𝑥𝐵) = ∅)
3 ralnex 3059 . . 3 (∀𝑥𝐴 ¬ (𝑥𝐵) ≠ ∅ ↔ ¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
4 unissb 4893 . . . 4 ( 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
5 disj2 4407 . . . 4 (( 𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))
6 disj2 4407 . . . . 5 ((𝑥𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵))
76ralbii 3079 . . . 4 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ∀𝑥𝐴 𝑥 ⊆ (V ∖ 𝐵))
84, 5, 73bitr4ri 304 . . 3 (∀𝑥𝐴 (𝑥𝐵) = ∅ ↔ ( 𝐴𝐵) = ∅)
92, 3, 83bitr3i 301 . 2 (¬ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅ ↔ ( 𝐴𝐵) = ∅)
109necon1abii 2977 1 (( 𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 (𝑥𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  cin 3897  wss 3898  c0 4282   cuni 4860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-uni 4861
This theorem is referenced by:  locfinreflem  33925
  Copyright terms: Public domain W3C validator