![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniinn0 | Structured version Visualization version GIF version |
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
uniinn0 | ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2941 | . . . 4 ⊢ (¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ (𝑥 ∩ 𝐵) = ∅) | |
2 | 1 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅) |
3 | ralnex 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | |
4 | unissb 4946 | . . . 4 ⊢ (∪ 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) | |
5 | disj2 4461 | . . . 4 ⊢ ((∪ 𝐴 ∩ 𝐵) = ∅ ↔ ∪ 𝐴 ⊆ (V ∖ 𝐵)) | |
6 | disj2 4461 | . . . . 5 ⊢ ((𝑥 ∩ 𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵)) | |
7 | 6 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) |
8 | 4, 5, 7 | 3bitr4ri 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
9 | 2, 3, 8 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
10 | 9 | necon1abii 2986 | 1 ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1533 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 Vcvv 3473 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-v 3475 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4327 df-uni 4913 |
This theorem is referenced by: locfinreflem 33474 |
Copyright terms: Public domain | W3C validator |