Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniinn0 | Structured version Visualization version GIF version |
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
uniinn0 | ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2947 | . . . 4 ⊢ (¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ (𝑥 ∩ 𝐵) = ∅) | |
2 | 1 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅) |
3 | ralnex 3167 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | |
4 | unissb 4873 | . . . 4 ⊢ (∪ 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) | |
5 | disj2 4391 | . . . 4 ⊢ ((∪ 𝐴 ∩ 𝐵) = ∅ ↔ ∪ 𝐴 ⊆ (V ∖ 𝐵)) | |
6 | disj2 4391 | . . . . 5 ⊢ ((𝑥 ∩ 𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵)) | |
7 | 6 | ralbii 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) |
8 | 4, 5, 7 | 3bitr4ri 304 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
9 | 2, 3, 8 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
10 | 9 | necon1abii 2992 | 1 ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-uni 4840 |
This theorem is referenced by: locfinreflem 31790 |
Copyright terms: Public domain | W3C validator |