Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniinn0 | Structured version Visualization version GIF version |
Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
uniinn0 | ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2946 | . . . 4 ⊢ (¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ (𝑥 ∩ 𝐵) = ∅) | |
2 | 1 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅) |
3 | ralnex 3163 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | |
4 | unissb 4870 | . . . 4 ⊢ (∪ 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) | |
5 | disj2 4388 | . . . 4 ⊢ ((∪ 𝐴 ∩ 𝐵) = ∅ ↔ ∪ 𝐴 ⊆ (V ∖ 𝐵)) | |
6 | disj2 4388 | . . . . 5 ⊢ ((𝑥 ∩ 𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵)) | |
7 | 6 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) |
8 | 4, 5, 7 | 3bitr4ri 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
9 | 2, 3, 8 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
10 | 9 | necon1abii 2991 | 1 ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-uni 4837 |
This theorem is referenced by: locfinreflem 31692 |
Copyright terms: Public domain | W3C validator |