Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > difuncomp | Structured version Visualization version GIF version |
Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
difuncomp | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4154 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐴) = 𝐴) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∩ 𝐴) = 𝐴) |
3 | incom 4139 | . . . 4 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
4 | 2, 3 | eqtr3di 2794 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 = (𝐴 ∩ 𝐶)) |
5 | 4 | difeq1d 4060 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
6 | difundi 4218 | . . . 4 ⊢ (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) | |
7 | dfss4 4197 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
9 | 8 | ineq1d 4150 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
10 | 6, 9 | eqtrid 2791 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
11 | indif2 4209 | . . 3 ⊢ (𝐴 ∩ (𝐶 ∖ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵) | |
12 | 10, 11 | eqtrdi 2795 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
13 | 5, 12 | eqtr4d 2782 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 |
This theorem is referenced by: ldgenpisyslem1 32110 |
Copyright terms: Public domain | W3C validator |