![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difuncomp | Structured version Visualization version GIF version |
Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
difuncomp | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4244 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐴) = 𝐴) | |
2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∩ 𝐴) = 𝐴) |
3 | incom 4230 | . . . 4 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
4 | 2, 3 | eqtr3di 2795 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 = (𝐴 ∩ 𝐶)) |
5 | 4 | difeq1d 4148 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
6 | difundi 4309 | . . . 4 ⊢ (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) | |
7 | dfss4 4288 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
9 | 8 | ineq1d 4240 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
10 | 6, 9 | eqtrid 2792 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
11 | indif2 4300 | . . 3 ⊢ (𝐴 ∩ (𝐶 ∖ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵) | |
12 | 10, 11 | eqtrdi 2796 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
13 | 5, 12 | eqtr4d 2783 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 |
This theorem is referenced by: ldgenpisyslem1 34127 |
Copyright terms: Public domain | W3C validator |