| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difuncomp | Structured version Visualization version GIF version | ||
| Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| difuncomp | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4173 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐴) = 𝐴) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∩ 𝐴) = 𝐴) |
| 3 | incom 4159 | . . . 4 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 4 | 2, 3 | eqtr3di 2781 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 = (𝐴 ∩ 𝐶)) |
| 5 | 4 | difeq1d 4075 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
| 6 | difundi 4240 | . . . 4 ⊢ (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) | |
| 7 | dfss4 4219 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
| 8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
| 9 | 8 | ineq1d 4169 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
| 10 | 6, 9 | eqtrid 2778 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
| 11 | indif2 4231 | . . 3 ⊢ (𝐴 ∩ (𝐶 ∖ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵) | |
| 12 | 10, 11 | eqtrdi 2782 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
| 13 | 5, 12 | eqtr4d 2769 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 |
| This theorem is referenced by: ldgenpisyslem1 34174 |
| Copyright terms: Public domain | W3C validator |