Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > difuncomp | Structured version Visualization version GIF version |
Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
difuncomp | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4106 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐴) = 𝐴) | |
2 | 1 | biimpi 219 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∩ 𝐴) = 𝐴) |
3 | incom 4091 | . . . 4 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
4 | 2, 3 | eqtr3di 2788 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 = (𝐴 ∩ 𝐶)) |
5 | 4 | difeq1d 4012 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
6 | difundi 4170 | . . . 4 ⊢ (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) | |
7 | dfss4 4149 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
8 | 7 | biimpi 219 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
9 | 8 | ineq1d 4102 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
10 | 6, 9 | syl5eq 2785 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
11 | indif2 4161 | . . 3 ⊢ (𝐴 ∩ (𝐶 ∖ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵) | |
12 | 10, 11 | eqtrdi 2789 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
13 | 5, 12 | eqtr4d 2776 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∖ cdif 3840 ∪ cun 3841 ∩ cin 3842 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 |
This theorem is referenced by: ldgenpisyslem1 31703 |
Copyright terms: Public domain | W3C validator |