Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem1 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem1 34199
Description: Lemma for ldgenpisys 34202. (Contributed by Thierry Arnoux, 29-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem1.1 (𝜑𝐴𝐸)
Assertion
Ref Expression
ldgenpisyslem1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝑠,𝑏,𝑥,𝐴,𝑡,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑥,𝑉   𝑦,𝑇   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠,𝑏)   𝑃(𝑠,𝑏)   𝑇(𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4060 . . 3 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂
2 dynkin.o . . . 4 (𝜑𝑂𝑉)
3 pwexg 5353 . . . 4 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
4 rabexg 5312 . . . 4 (𝒫 𝑂 ∈ V → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V)
5 elpwg 4583 . . . 4 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
62, 3, 4, 54syl 19 . . 3 (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
71, 6mpbiri 258 . 2 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂)
8 ineq2 4194 . . . . 5 (𝑏 = ∅ → (𝐴𝑏) = (𝐴 ∩ ∅))
98eleq1d 2820 . . . 4 (𝑏 = ∅ → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∅) ∈ 𝐸))
10 0elpw 5331 . . . . 5 ∅ ∈ 𝒫 𝑂
1110a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 𝑂)
12 dynkin.l . . . . . . . . . . . 12 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
1312isldsys 34192 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1413simprbi 496 . . . . . . . . . 10 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1514simp1d 1142 . . . . . . . . 9 (𝑡𝐿 → ∅ ∈ 𝑡)
1615ad2antlr 727 . . . . . . . 8 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → ∅ ∈ 𝑡)
1716ex 412 . . . . . . 7 ((𝜑𝑡𝐿) → (𝑇𝑡 → ∅ ∈ 𝑡))
1817ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
19 0ex 5282 . . . . . . 7 ∅ ∈ V
2019elintrab 4941 . . . . . 6 (∅ ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
2118, 20sylibr 234 . . . . 5 (𝜑 → ∅ ∈ {𝑡𝐿𝑇𝑡})
22 in0 4375 . . . . 5 (𝐴 ∩ ∅) = ∅
23 ldgenpisys.e . . . . 5 𝐸 = {𝑡𝐿𝑇𝑡}
2421, 22, 233eltr4g 2852 . . . 4 (𝜑 → (𝐴 ∩ ∅) ∈ 𝐸)
259, 11, 24elrabd 3678 . . 3 (𝜑 → ∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
26 ineq2 4194 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴𝑥))
2726eleq1d 2820 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑥) ∈ 𝐸))
2827elrab 3676 . . . . . 6 (𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
29 pwidg 4600 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
302, 29syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ 𝒫 𝑂)
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → 𝑂 ∈ 𝒫 𝑂)
3231elpwdifcl 32512 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝑂𝑥) ∈ 𝒫 𝑂)
3312pwldsys 34193 . . . . . . . . . . . . . . . . . . 19 (𝑂𝑉 → 𝒫 𝑂𝐿)
342, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 𝒫 𝑂𝐿)
35 ldgenpisys.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇𝑃)
36 dynkin.p . . . . . . . . . . . . . . . . . . . . . 22 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
3736ispisys 34188 . . . . . . . . . . . . . . . . . . . . 21 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3835, 37sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3938simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
4039elpwid 4589 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ 𝒫 𝑂)
41 sseq2 3990 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝒫 𝑂 → (𝑇𝑡𝑇 ⊆ 𝒫 𝑂))
4241intminss 4955 . . . . . . . . . . . . . . . . . 18 ((𝒫 𝑂𝐿𝑇 ⊆ 𝒫 𝑂) → {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4334, 40, 42syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4423, 43eqsstrid 4002 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ⊆ 𝒫 𝑂)
45 ldgenpisyslem1.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐸)
4644, 45sseldd 3964 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ 𝒫 𝑂)
4746elpwid 4589 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
4847ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑂)
49 difin 4252 . . . . . . . . . . . . . . . 16 (𝐴 ∖ (𝐴𝑥)) = (𝐴𝑥)
50 difin2 4281 . . . . . . . . . . . . . . . 16 (𝐴𝑂 → (𝐴𝑥) = ((𝑂𝑥) ∩ 𝐴))
5149, 50eqtrid 2783 . . . . . . . . . . . . . . 15 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = ((𝑂𝑥) ∩ 𝐴))
52 incom 4189 . . . . . . . . . . . . . . 15 ((𝑂𝑥) ∩ 𝐴) = (𝐴 ∩ (𝑂𝑥))
5351, 52eqtrdi 2787 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝐴 ∩ (𝑂𝑥)))
54 difuncomp 32539 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5553, 54eqtr3d 2773 . . . . . . . . . . . . 13 (𝐴𝑂 → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5648, 55syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
57 difeq2 4100 . . . . . . . . . . . . . 14 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → (𝑂𝑦) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5857eleq1d 2820 . . . . . . . . . . . . 13 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → ((𝑂𝑦) ∈ 𝑡 ↔ (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡))
5914simp2d 1143 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
6059ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
61 difeq2 4100 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
6261eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝑦) ∈ 𝑡))
6362cbvralvw 3224 . . . . . . . . . . . . . 14 (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ↔ ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
6460, 63sylib 218 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
65 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
6645, 23eleqtrdi 2845 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 {𝑡𝐿𝑇𝑡})
67 elintrabg 4942 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐸 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6845, 67syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6966, 68mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑡𝐿 (𝑇𝑡𝐴𝑡))
7069r19.21bi 3238 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐿) → (𝑇𝑡𝐴𝑡))
7170imp 406 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
7271adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
73 difeq2 4100 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑂𝑥) = (𝑂𝐴))
7473eleq1d 2820 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐴) ∈ 𝑡))
7559adantr 480 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
76 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → 𝐴𝑡)
7774, 75, 76rspcdva 3607 . . . . . . . . . . . . . . 15 ((𝑡𝐿𝐴𝑡) → (𝑂𝐴) ∈ 𝑡)
7865, 72, 77syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂𝐴) ∈ 𝑡)
79 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
8079simprd 495 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝐸)
8180, 23eleqtrdi 2845 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡})
82 vex 3468 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
8382inex2 5293 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ∈ V
84 elintrabg 4942 . . . . . . . . . . . . . . . . 17 ((𝐴𝑥) ∈ V → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8583, 84mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8681, 85mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
87 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑇𝑡)
88 rspa 3235 . . . . . . . . . . . . . . . 16 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
8988imp 406 . . . . . . . . . . . . . . 15 (((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
9086, 65, 87, 89syl21anc 837 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
91 incom 4189 . . . . . . . . . . . . . . . 16 ((𝑂𝐴) ∩ (𝐴𝑥)) = ((𝐴𝑥) ∩ (𝑂𝐴))
92 inss1 4217 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ⊆ 𝐴
93 disjdif 4452 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ (𝑂𝐴)) = ∅
94 ssdisj 4440 . . . . . . . . . . . . . . . . 17 (((𝐴𝑥) ⊆ 𝐴 ∧ (𝐴 ∩ (𝑂𝐴)) = ∅) → ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅)
9592, 93, 94mp2an 692 . . . . . . . . . . . . . . . 16 ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅
9691, 95eqtri 2759 . . . . . . . . . . . . . . 15 ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅
9796a1i 11 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅)
9812, 65, 78, 90, 97unelldsys 34194 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∪ (𝐴𝑥)) ∈ 𝑡)
9958, 64, 98rspcdva 3607 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡)
10056, 99eqeltrd 2835 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)
101100ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
102101ralrimiva 3133 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
103 inex1g 5294 . . . . . . . . . . . 12 (𝐴𝐸 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
10445, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
105104adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ V)
106 elintrabg 4942 . . . . . . . . . 10 ((𝐴 ∩ (𝑂𝑥)) ∈ V → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
107105, 106syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
108102, 107mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡})
109108, 23eleqtrrdi 2846 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸)
11032, 109jca 511 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
11128, 110sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
112 ineq2 4194 . . . . . . 7 (𝑏 = (𝑂𝑥) → (𝐴𝑏) = (𝐴 ∩ (𝑂𝑥)))
113112eleq1d 2820 . . . . . 6 (𝑏 = (𝑂𝑥) → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
114113elrab 3676 . . . . 5 ((𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
115111, 114sylibr 234 . . . 4 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
116115ralrimiva 3133 . . 3 (𝜑 → ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
117 ineq2 4194 . . . . . . 7 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴 𝑥))
118117eleq1d 2820 . . . . . 6 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 𝑥) ∈ 𝐸))
1191sspwi 4592 . . . . . . . 8 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂
120 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
121119, 120sselid 3961 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝒫 𝑂)
122121elpwunicl 32540 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑂)
123 uniin2 32538 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = (𝐴 𝑥)
124 vex 3468 . . . . . . . . . . . . . 14 𝑦 ∈ V
125124inex2 5293 . . . . . . . . . . . . 13 (𝐴𝑦) ∈ V
126125dfiun3 5954 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = ran (𝑦𝑥 ↦ (𝐴𝑦))
127123, 126eqtr3i 2761 . . . . . . . . . . 11 (𝐴 𝑥) = ran (𝑦𝑥 ↦ (𝐴𝑦))
128 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
129 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑦(𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
130 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑥 ≼ ω
131 nfdisj1 5105 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑦𝑥 𝑦
132130, 131nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
133129, 132nfan 1899 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
134 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑦 𝑡𝐿
135133, 134nfan 1899 . . . . . . . . . . . . . . . 16 𝑦(((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿)
136 nfv 1914 . . . . . . . . . . . . . . . 16 𝑦 𝑇𝑡
137135, 136nfan 1899 . . . . . . . . . . . . . . 15 𝑦((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡)
138 elpwi 4587 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
139138ad4antlr 733 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
140139sselda 3963 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
141 ineq2 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑦 → (𝐴𝑏) = (𝐴𝑦))
142141eleq1d 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑦 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑦) ∈ 𝐸))
143142elrab 3676 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑦 ∈ 𝒫 𝑂 ∧ (𝐴𝑦) ∈ 𝐸))
144143simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → (𝐴𝑦) ∈ 𝐸)
145140, 144syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝐸)
146 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑡𝐿)
147 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑇𝑡)
14823eleq2i 2827 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ 𝐸 ↔ (𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡})
149125elintrab 4941 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
150148, 149bitri 275 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑦) ∈ 𝐸 ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
151 rspa 3235 . . . . . . . . . . . . . . . . . . 19 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
152150, 151sylanb 581 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∈ 𝐸𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
153152imp 406 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑦) ∈ 𝐸𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑦) ∈ 𝑡)
154145, 146, 147, 153syl21anc 837 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝑡)
155154ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑦𝑥 → (𝐴𝑦) ∈ 𝑡))
156137, 155ralrimi 3244 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡)
157 eqid 2736 . . . . . . . . . . . . . . 15 (𝑦𝑥 ↦ (𝐴𝑦)) = (𝑦𝑥 ↦ (𝐴𝑦))
158157rnmptss 7118 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡 → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
159156, 158syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
160128, 159sselpwd 5303 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
161 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
162161simpld 494 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ≼ ω)
163 1stcrestlem 23395 . . . . . . . . . . . . 13 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
164162, 163syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
165161simprd 495 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦𝑥 𝑦)
166 disjin2 32573 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦Disj 𝑦𝑥 (𝐴𝑦))
167 disjrnmpt 32571 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 (𝐴𝑦) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
168165, 166, 1673syl 18 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
169 nfmpt1 5225 . . . . . . . . . . . . . . 15 𝑦(𝑦𝑥 ↦ (𝐴𝑦))
170169nfrn 5937 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝑥 ↦ (𝐴𝑦))
171 nfcv 2899 . . . . . . . . . . . . . 14 𝑧𝑦
172 nfcv 2899 . . . . . . . . . . . . . 14 𝑦𝑧
173 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝑧𝑦 = 𝑧)
174170, 171, 172, 173cbvdisjf 32557 . . . . . . . . . . . . 13 (Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
175168, 174sylibr 234 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)
176 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (𝑧 ≼ ω ↔ ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω))
177172, 170disjeq1f 32559 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦))
178176, 177anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)))
179 unieq 4899 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → 𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)))
180179eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ( 𝑧𝑡 ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
181178, 180imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡) ↔ ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)))
18214simp3d 1144 . . . . . . . . . . . . . . . 16 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
183 breq1 5127 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
184 disjeq1 5098 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
185183, 184anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
186 unieq 4899 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 𝑥 = 𝑧)
187186eleq1d 2820 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ( 𝑥𝑡 𝑧𝑡))
188185, 187imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡)))
189188cbvralvw 3224 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
190182, 189sylib 218 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
191190adantr 480 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
192 simpr 484 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
193181, 191, 192rspcdva 3607 . . . . . . . . . . . . 13 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
194193imp 406 . . . . . . . . . . . 12 (((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) ∧ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
195128, 160, 164, 175, 194syl22anc 838 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
196127, 195eqeltrid 2839 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 𝑥) ∈ 𝑡)
197196ex 412 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
198197ralrimiva 3133 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
199 vuniex 7738 . . . . . . . . . 10 𝑥 ∈ V
200199inex2 5293 . . . . . . . . 9 (𝐴 𝑥) ∈ V
201200elintrab 4941 . . . . . . . 8 ((𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
202198, 201sylibr 234 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡})
203202, 23eleqtrrdi 2846 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ 𝐸)
204118, 122, 203elrabd 3678 . . . . 5 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
205204ex 412 . . . 4 ((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
206205ralrimiva 3133 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
20725, 116, 2063jca 1128 . 2 (𝜑 → (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})))
20812isldsys 34192 . 2 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿 ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))))
2097, 207, 208sylanbrc 583 1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4888   cint 4927   ciun 4972  Disj wdisj 5091   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  ωcom 7866  cdom 8962  ficfi 9427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961
This theorem is referenced by:  ldgenpisyslem2  34200
  Copyright terms: Public domain W3C validator