Step | Hyp | Ref
| Expression |
1 | | ssrab2 4013 |
. . 3
⊢ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂 |
2 | | dynkin.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
3 | | pwexg 5301 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) |
4 | | rabexg 5255 |
. . . 4
⊢
(𝒫 𝑂 ∈
V → {𝑏 ∈
𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ V) |
5 | | elpwg 4536 |
. . . 4
⊢ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ V → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂)) |
6 | 2, 3, 4, 5 | 4syl 19 |
. . 3
⊢ (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂)) |
7 | 1, 6 | mpbiri 257 |
. 2
⊢ (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂) |
8 | | ineq2 4140 |
. . . . 5
⊢ (𝑏 = ∅ → (𝐴 ∩ 𝑏) = (𝐴 ∩ ∅)) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ (𝑏 = ∅ → ((𝐴 ∩ 𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∅) ∈ 𝐸)) |
10 | | 0elpw 5278 |
. . . . 5
⊢ ∅
∈ 𝒫 𝑂 |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝒫
𝑂) |
12 | | dynkin.l |
. . . . . . . . . . . 12
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
13 | 12 | isldsys 32124 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
14 | 13 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑡 ∈ 𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
15 | 14 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐿 → ∅ ∈ 𝑡) |
16 | 15 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∅ ∈ 𝑡) |
17 | 16 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
18 | 17 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
19 | | 0ex 5231 |
. . . . . . 7
⊢ ∅
∈ V |
20 | 19 | elintrab 4891 |
. . . . . 6
⊢ (∅
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
21 | 18, 20 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
22 | | in0 4325 |
. . . . 5
⊢ (𝐴 ∩ ∅) =
∅ |
23 | | ldgenpisys.e |
. . . . 5
⊢ 𝐸 = ∩
{𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
24 | 21, 22, 23 | 3eltr4g 2856 |
. . . 4
⊢ (𝜑 → (𝐴 ∩ ∅) ∈ 𝐸) |
25 | 9, 11, 24 | elrabd 3626 |
. . 3
⊢ (𝜑 → ∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
26 | | ineq2 4140 |
. . . . . . . 8
⊢ (𝑏 = 𝑥 → (𝐴 ∩ 𝑏) = (𝐴 ∩ 𝑥)) |
27 | 26 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑏 = 𝑥 → ((𝐴 ∩ 𝑏) ∈ 𝐸 ↔ (𝐴 ∩ 𝑥) ∈ 𝐸)) |
28 | 27 | elrab 3624 |
. . . . . 6
⊢ (𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) |
29 | | pwidg 4555 |
. . . . . . . . . 10
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) |
30 | 2, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ 𝒫 𝑂) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → 𝑂 ∈ 𝒫 𝑂) |
32 | 31 | elpwdifcl 30875 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
33 | 12 | pwldsys 32125 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ 𝐿) |
34 | 2, 33 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝒫 𝑂 ∈ 𝐿) |
35 | | ldgenpisys.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
36 | | dynkin.p |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
37 | 36 | ispisys 32120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
38 | 35, 37 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
39 | 38 | simpld 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
40 | 39 | elpwid 4544 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
41 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝒫 𝑂 → (𝑇 ⊆ 𝑡 ↔ 𝑇 ⊆ 𝒫 𝑂)) |
42 | 41 | intminss 4905 |
. . . . . . . . . . . . . . . . . 18
⊢
((𝒫 𝑂 ∈
𝐿 ∧ 𝑇 ⊆ 𝒫 𝑂) → ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
43 | 34, 40, 42 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
44 | 23, 43 | eqsstrid 3969 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ⊆ 𝒫 𝑂) |
45 | | ldgenpisyslem1.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ 𝐸) |
46 | 44, 45 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑂) |
47 | 46 | elpwid 4544 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
48 | 47 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝐴 ⊆ 𝑂) |
49 | | difin 4195 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∖ (𝐴 ∩ 𝑥)) = (𝐴 ∖ 𝑥) |
50 | | difin2 4225 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ 𝑥) = ((𝑂 ∖ 𝑥) ∩ 𝐴)) |
51 | 49, 50 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ (𝐴 ∩ 𝑥)) = ((𝑂 ∖ 𝑥) ∩ 𝐴)) |
52 | | incom 4135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑂 ∖ 𝑥) ∩ 𝐴) = (𝐴 ∩ (𝑂 ∖ 𝑥)) |
53 | 51, 52 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ (𝐴 ∩ 𝑥)) = (𝐴 ∩ (𝑂 ∖ 𝑥))) |
54 | | difuncomp 30893 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∖ (𝐴 ∩ 𝑥)) = (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)))) |
55 | 53, 54 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑂 → (𝐴 ∩ (𝑂 ∖ 𝑥)) = (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)))) |
56 | 48, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ (𝑂 ∖ 𝑥)) = (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)))) |
57 | | difeq2 4051 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)) → (𝑂 ∖ 𝑦) = (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)))) |
58 | 57 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)) → ((𝑂 ∖ 𝑦) ∈ 𝑡 ↔ (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥))) ∈ 𝑡)) |
59 | 14 | simp2d 1142 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
60 | 59 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
61 | | difeq2 4051 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑂 ∖ 𝑥) = (𝑂 ∖ 𝑦)) |
62 | 61 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑂 ∖ 𝑥) ∈ 𝑡 ↔ (𝑂 ∖ 𝑦) ∈ 𝑡)) |
63 | 62 | cbvralvw 3383 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ↔ ∀𝑦 ∈ 𝑡 (𝑂 ∖ 𝑦) ∈ 𝑡) |
64 | 60, 63 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∀𝑦 ∈ 𝑡 (𝑂 ∖ 𝑦) ∈ 𝑡) |
65 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
66 | 45, 23 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
67 | | elintrabg 4892 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ 𝐸 → (𝐴 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡))) |
68 | 45, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐴 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡))) |
69 | 66, 68 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡)) |
70 | 69 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → 𝐴 ∈ 𝑡)) |
71 | 70 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝐴 ∈ 𝑡) |
72 | 71 | adantllr 716 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝐴 ∈ 𝑡) |
73 | | difeq2 4051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → (𝑂 ∖ 𝑥) = (𝑂 ∖ 𝐴)) |
74 | 73 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ((𝑂 ∖ 𝑥) ∈ 𝑡 ↔ (𝑂 ∖ 𝐴) ∈ 𝑡)) |
75 | 59 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
76 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡) → 𝐴 ∈ 𝑡) |
77 | 74, 75, 76 | rspcdva 3562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝐿 ∧ 𝐴 ∈ 𝑡) → (𝑂 ∖ 𝐴) ∈ 𝑡) |
78 | 65, 72, 77 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝑂 ∖ 𝐴) ∈ 𝑡) |
79 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) |
80 | 79 | simprd 496 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ 𝑥) ∈ 𝐸) |
81 | 80, 23 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
82 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
83 | 82 | inex2 5242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑥) ∈ V |
84 | | elintrabg 4892 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑥) ∈ V → ((𝐴 ∩ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡))) |
85 | 83, 84 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ((𝐴 ∩ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡))) |
86 | 81, 85 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡)) |
87 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝑇 ⊆ 𝑡) |
88 | | rspa 3132 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑡 ∈
𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡) ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡)) |
89 | 88 | imp 407 |
. . . . . . . . . . . . . . 15
⊢
(((∀𝑡 ∈
𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑥) ∈ 𝑡) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ 𝑥) ∈ 𝑡) |
90 | 86, 65, 87, 89 | syl21anc 835 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ 𝑥) ∈ 𝑡) |
91 | | incom 4135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑂 ∖ 𝐴) ∩ (𝐴 ∩ 𝑥)) = ((𝐴 ∩ 𝑥) ∩ (𝑂 ∖ 𝐴)) |
92 | | inss1 4162 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑥) ⊆ 𝐴 |
93 | | disjdif 4405 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅ |
94 | | ssdisj 4393 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∩ 𝑥) ⊆ 𝐴 ∧ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅) → ((𝐴 ∩ 𝑥) ∩ (𝑂 ∖ 𝐴)) = ∅) |
95 | 92, 93, 94 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∩ 𝑥) ∩ (𝑂 ∖ 𝐴)) = ∅ |
96 | 91, 95 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑂 ∖ 𝐴) ∩ (𝐴 ∩ 𝑥)) = ∅ |
97 | 96 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ((𝑂 ∖ 𝐴) ∩ (𝐴 ∩ 𝑥)) = ∅) |
98 | 12, 65, 78, 90, 97 | unelldsys 32126 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥)) ∈ 𝑡) |
99 | 58, 64, 98 | rspcdva 3562 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝑂 ∖ ((𝑂 ∖ 𝐴) ∪ (𝐴 ∩ 𝑥))) ∈ 𝑡) |
100 | 56, 99 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝑡) |
101 | 100 | ex 413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝑡)) |
102 | 101 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝑡)) |
103 | | inex1g 5243 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝐸 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ V) |
104 | 45, 103 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ V) |
105 | 104 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ V) |
106 | | elintrabg 4892 |
. . . . . . . . . 10
⊢ ((𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ V → ((𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝑡))) |
107 | 105, 106 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → ((𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝑡))) |
108 | 102, 107 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
109 | 108, 23 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝐸) |
110 | 32, 109 | jca 512 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑥) ∈ 𝐸)) → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝐸)) |
111 | 28, 110 | sylan2b 594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝐸)) |
112 | | ineq2 4140 |
. . . . . . 7
⊢ (𝑏 = (𝑂 ∖ 𝑥) → (𝐴 ∩ 𝑏) = (𝐴 ∩ (𝑂 ∖ 𝑥))) |
113 | 112 | eleq1d 2823 |
. . . . . 6
⊢ (𝑏 = (𝑂 ∖ 𝑥) → ((𝐴 ∩ 𝑏) ∈ 𝐸 ↔ (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝐸)) |
114 | 113 | elrab 3624 |
. . . . 5
⊢ ((𝑂 ∖ 𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂 ∖ 𝑥)) ∈ 𝐸)) |
115 | 111, 114 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) → (𝑂 ∖ 𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
116 | 115 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} (𝑂 ∖ 𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
117 | | ineq2 4140 |
. . . . . . 7
⊢ (𝑏 = ∪
𝑥 → (𝐴 ∩ 𝑏) = (𝐴 ∩ ∪ 𝑥)) |
118 | 117 | eleq1d 2823 |
. . . . . 6
⊢ (𝑏 = ∪
𝑥 → ((𝐴 ∩ 𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∪ 𝑥) ∈ 𝐸)) |
119 | 1 | sspwi 4547 |
. . . . . . . 8
⊢ 𝒫
{𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂 |
120 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
121 | 119, 120 | sselid 3919 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝒫 𝑂) |
122 | 121 | elpwunicl 30894 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝒫 𝑂) |
123 | | uniin2 30892 |
. . . . . . . . . . . 12
⊢ ∪ 𝑦 ∈ 𝑥 (𝐴 ∩ 𝑦) = (𝐴 ∩ ∪ 𝑥) |
124 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
125 | 124 | inex2 5242 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ 𝑦) ∈ V |
126 | 125 | dfiun3 5875 |
. . . . . . . . . . . 12
⊢ ∪ 𝑦 ∈ 𝑥 (𝐴 ∩ 𝑦) = ∪ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) |
127 | 123, 126 | eqtr3i 2768 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ ∪ 𝑥) =
∪ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) |
128 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
129 | | nfv 1917 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
130 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦 𝑥 ≼
ω |
131 | | nfdisj1 5053 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦Disj
𝑦 ∈ 𝑥 𝑦 |
132 | 130, 131 | nfan 1902 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) |
133 | 129, 132 | nfan 1902 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
134 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦 𝑡 ∈ 𝐿 |
135 | 133, 134 | nfan 1902 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) |
136 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦 𝑇 ⊆ 𝑡 |
137 | 135, 136 | nfan 1902 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) |
138 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
139 | 138 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
140 | 139 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
141 | | ineq2 4140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑦 → (𝐴 ∩ 𝑏) = (𝐴 ∩ 𝑦)) |
142 | 141 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑦 → ((𝐴 ∩ 𝑏) ∈ 𝐸 ↔ (𝐴 ∩ 𝑦) ∈ 𝐸)) |
143 | 142 | elrab 3624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑦 ∈ 𝒫 𝑂 ∧ (𝐴 ∩ 𝑦) ∈ 𝐸)) |
144 | 143 | simprbi 497 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} → (𝐴 ∩ 𝑦) ∈ 𝐸) |
145 | 140, 144 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) ∧ 𝑦 ∈ 𝑥) → (𝐴 ∩ 𝑦) ∈ 𝐸) |
146 | | simpllr 773 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) ∧ 𝑦 ∈ 𝑥) → 𝑡 ∈ 𝐿) |
147 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) ∧ 𝑦 ∈ 𝑥) → 𝑇 ⊆ 𝑡) |
148 | 23 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∩ 𝑦) ∈ 𝐸 ↔ (𝐴 ∩ 𝑦) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
149 | 125 | elintrab 4891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∩ 𝑦) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑦) ∈ 𝑡)) |
150 | 148, 149 | bitri 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∩ 𝑦) ∈ 𝐸 ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑦) ∈ 𝑡)) |
151 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑡 ∈
𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑦) ∈ 𝑡) ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑦) ∈ 𝑡)) |
152 | 150, 151 | sylanb 581 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑦) ∈ 𝐸 ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → (𝐴 ∩ 𝑦) ∈ 𝑡)) |
153 | 152 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∩ 𝑦) ∈ 𝐸 ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ 𝑦) ∈ 𝑡) |
154 | 145, 146,
147, 153 | syl21anc 835 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) ∧ 𝑦 ∈ 𝑥) → (𝐴 ∩ 𝑦) ∈ 𝑡) |
155 | 154 | ex 413 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝑦 ∈ 𝑥 → (𝐴 ∩ 𝑦) ∈ 𝑡)) |
156 | 137, 155 | ralrimi 3141 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∀𝑦 ∈ 𝑥 (𝐴 ∩ 𝑦) ∈ 𝑡) |
157 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) = (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) |
158 | 157 | rnmptss 6996 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑥 (𝐴 ∩ 𝑦) ∈ 𝑡 → ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ⊆ 𝑡) |
159 | 156, 158 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ⊆ 𝑡) |
160 | 128, 159 | sselpwd 5250 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) |
161 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
162 | 161 | simpld 495 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → 𝑥 ≼ ω) |
163 | | 1stcrestlem 22603 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≼ ω → ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω) |
165 | 161 | simprd 496 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → Disj 𝑦 ∈ 𝑥 𝑦) |
166 | | disjin2 30926 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑦
∈ 𝑥 𝑦 → Disj 𝑦 ∈ 𝑥 (𝐴 ∩ 𝑦)) |
167 | | disjrnmpt 30924 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑦
∈ 𝑥 (𝐴 ∩ 𝑦) → Disj 𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑧) |
168 | 165, 166,
167 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → Disj 𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑧) |
169 | | nfmpt1 5182 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) |
170 | 169 | nfrn 5861 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) |
171 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧𝑦 |
172 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝑧 |
173 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
174 | 170, 171,
172, 173 | cbvdisjf 30910 |
. . . . . . . . . . . . 13
⊢
(Disj 𝑦
∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦 ↔ Disj 𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑧) |
175 | 168, 174 | sylibr 233 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦) |
176 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → (𝑧 ≼ ω ↔ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω)) |
177 | 172, 170 | disjeq1f 30912 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → (Disj 𝑦 ∈ 𝑧 𝑦 ↔ Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦)) |
178 | 176, 177 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → ((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) ↔ (ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦))) |
179 | | unieq 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → ∪ 𝑧 = ∪
ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))) |
180 | 179 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → (∪ 𝑧 ∈ 𝑡 ↔ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝑡)) |
181 | 178, 180 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) → (((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑡) ↔ ((ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝑡))) |
182 | 14 | simp3d 1143 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
183 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω)) |
184 | | disjeq1 5046 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ 𝑧 𝑦)) |
185 | 183, 184 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦))) |
186 | | unieq 4850 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → ∪ 𝑥 = ∪
𝑧) |
187 | 186 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (∪ 𝑥 ∈ 𝑡 ↔ ∪ 𝑧 ∈ 𝑡)) |
188 | 185, 187 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑡))) |
189 | 188 | cbvralvw 3383 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝒫 𝑡((𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑡)) |
190 | 182, 189 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐿 → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑡)) |
191 | 190 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ 𝐿 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ∪ 𝑧 ∈ 𝑡)) |
192 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ 𝐿 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) → ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) |
193 | 181, 191,
192 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝐿 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) → ((ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝑡)) |
194 | 193 | imp 407 |
. . . . . . . . . . . 12
⊢ (((𝑡 ∈ 𝐿 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝒫 𝑡) ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦))𝑦)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝑡) |
195 | 128, 160,
164, 175, 194 | syl22anc 836 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝐴 ∩ 𝑦)) ∈ 𝑡) |
196 | 127, 195 | eqeltrid 2843 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝑇 ⊆ 𝑡) → (𝐴 ∩ ∪ 𝑥) ∈ 𝑡) |
197 | 196 | ex 413 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) → (𝑇 ⊆ 𝑡 → (𝐴 ∩ ∪ 𝑥) ∈ 𝑡)) |
198 | 197 | ralrimiva 3103 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ ∪ 𝑥) ∈ 𝑡)) |
199 | | vuniex 7592 |
. . . . . . . . . 10
⊢ ∪ 𝑥
∈ V |
200 | 199 | inex2 5242 |
. . . . . . . . 9
⊢ (𝐴 ∩ ∪ 𝑥)
∈ V |
201 | 200 | elintrab 4891 |
. . . . . . . 8
⊢ ((𝐴 ∩ ∪ 𝑥)
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → (𝐴 ∩ ∪ 𝑥) ∈ 𝑡)) |
202 | 198, 201 | sylibr 233 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝐴 ∩ ∪ 𝑥) ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
203 | 202, 23 | eleqtrrdi 2850 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝐴 ∩ ∪ 𝑥) ∈ 𝐸) |
204 | 118, 122,
203 | elrabd 3626 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
205 | 204 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})) |
206 | 205 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})) |
207 | 25, 116, 206 | 3jca 1127 |
. 2
⊢ (𝜑 → (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} (𝑂 ∖ 𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}))) |
208 | 12 | isldsys 32124 |
. 2
⊢ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝐿 ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} (𝑂 ∖ 𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})))) |
209 | 7, 207, 208 | sylanbrc 583 |
1
⊢ (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝐿) |