Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem1 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem1 32131
Description: Lemma for ldgenpisys 32134. (Contributed by Thierry Arnoux, 29-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem1.1 (𝜑𝐴𝐸)
Assertion
Ref Expression
ldgenpisyslem1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝑠,𝑏,𝑥,𝐴,𝑡,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑥,𝑉   𝑦,𝑇   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠,𝑏)   𝑃(𝑠,𝑏)   𝑇(𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . . 3 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂
2 dynkin.o . . . 4 (𝜑𝑂𝑉)
3 pwexg 5301 . . . 4 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
4 rabexg 5255 . . . 4 (𝒫 𝑂 ∈ V → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V)
5 elpwg 4536 . . . 4 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
62, 3, 4, 54syl 19 . . 3 (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
71, 6mpbiri 257 . 2 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂)
8 ineq2 4140 . . . . 5 (𝑏 = ∅ → (𝐴𝑏) = (𝐴 ∩ ∅))
98eleq1d 2823 . . . 4 (𝑏 = ∅ → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∅) ∈ 𝐸))
10 0elpw 5278 . . . . 5 ∅ ∈ 𝒫 𝑂
1110a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 𝑂)
12 dynkin.l . . . . . . . . . . . 12 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
1312isldsys 32124 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1413simprbi 497 . . . . . . . . . 10 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1514simp1d 1141 . . . . . . . . 9 (𝑡𝐿 → ∅ ∈ 𝑡)
1615ad2antlr 724 . . . . . . . 8 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → ∅ ∈ 𝑡)
1716ex 413 . . . . . . 7 ((𝜑𝑡𝐿) → (𝑇𝑡 → ∅ ∈ 𝑡))
1817ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
19 0ex 5231 . . . . . . 7 ∅ ∈ V
2019elintrab 4891 . . . . . 6 (∅ ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
2118, 20sylibr 233 . . . . 5 (𝜑 → ∅ ∈ {𝑡𝐿𝑇𝑡})
22 in0 4325 . . . . 5 (𝐴 ∩ ∅) = ∅
23 ldgenpisys.e . . . . 5 𝐸 = {𝑡𝐿𝑇𝑡}
2421, 22, 233eltr4g 2856 . . . 4 (𝜑 → (𝐴 ∩ ∅) ∈ 𝐸)
259, 11, 24elrabd 3626 . . 3 (𝜑 → ∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
26 ineq2 4140 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴𝑥))
2726eleq1d 2823 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑥) ∈ 𝐸))
2827elrab 3624 . . . . . 6 (𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
29 pwidg 4555 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
302, 29syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ 𝒫 𝑂)
3130adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → 𝑂 ∈ 𝒫 𝑂)
3231elpwdifcl 30875 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝑂𝑥) ∈ 𝒫 𝑂)
3312pwldsys 32125 . . . . . . . . . . . . . . . . . . 19 (𝑂𝑉 → 𝒫 𝑂𝐿)
342, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 𝒫 𝑂𝐿)
35 ldgenpisys.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇𝑃)
36 dynkin.p . . . . . . . . . . . . . . . . . . . . . 22 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
3736ispisys 32120 . . . . . . . . . . . . . . . . . . . . 21 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3835, 37sylib 217 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3938simpld 495 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
4039elpwid 4544 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ 𝒫 𝑂)
41 sseq2 3947 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝒫 𝑂 → (𝑇𝑡𝑇 ⊆ 𝒫 𝑂))
4241intminss 4905 . . . . . . . . . . . . . . . . . 18 ((𝒫 𝑂𝐿𝑇 ⊆ 𝒫 𝑂) → {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4334, 40, 42syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4423, 43eqsstrid 3969 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ⊆ 𝒫 𝑂)
45 ldgenpisyslem1.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐸)
4644, 45sseldd 3922 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ 𝒫 𝑂)
4746elpwid 4544 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
4847ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑂)
49 difin 4195 . . . . . . . . . . . . . . . 16 (𝐴 ∖ (𝐴𝑥)) = (𝐴𝑥)
50 difin2 4225 . . . . . . . . . . . . . . . 16 (𝐴𝑂 → (𝐴𝑥) = ((𝑂𝑥) ∩ 𝐴))
5149, 50eqtrid 2790 . . . . . . . . . . . . . . 15 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = ((𝑂𝑥) ∩ 𝐴))
52 incom 4135 . . . . . . . . . . . . . . 15 ((𝑂𝑥) ∩ 𝐴) = (𝐴 ∩ (𝑂𝑥))
5351, 52eqtrdi 2794 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝐴 ∩ (𝑂𝑥)))
54 difuncomp 30893 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5553, 54eqtr3d 2780 . . . . . . . . . . . . 13 (𝐴𝑂 → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5648, 55syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
57 difeq2 4051 . . . . . . . . . . . . . 14 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → (𝑂𝑦) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5857eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → ((𝑂𝑦) ∈ 𝑡 ↔ (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡))
5914simp2d 1142 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
6059ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
61 difeq2 4051 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
6261eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝑦) ∈ 𝑡))
6362cbvralvw 3383 . . . . . . . . . . . . . 14 (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ↔ ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
6460, 63sylib 217 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
65 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
6645, 23eleqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 {𝑡𝐿𝑇𝑡})
67 elintrabg 4892 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐸 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6845, 67syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6966, 68mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑡𝐿 (𝑇𝑡𝐴𝑡))
7069r19.21bi 3134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐿) → (𝑇𝑡𝐴𝑡))
7170imp 407 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
7271adantllr 716 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
73 difeq2 4051 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑂𝑥) = (𝑂𝐴))
7473eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐴) ∈ 𝑡))
7559adantr 481 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
76 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → 𝐴𝑡)
7774, 75, 76rspcdva 3562 . . . . . . . . . . . . . . 15 ((𝑡𝐿𝐴𝑡) → (𝑂𝐴) ∈ 𝑡)
7865, 72, 77syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂𝐴) ∈ 𝑡)
79 simpllr 773 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
8079simprd 496 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝐸)
8180, 23eleqtrdi 2849 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡})
82 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
8382inex2 5242 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ∈ V
84 elintrabg 4892 . . . . . . . . . . . . . . . . 17 ((𝐴𝑥) ∈ V → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8583, 84mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8681, 85mpbid 231 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
87 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑇𝑡)
88 rspa 3132 . . . . . . . . . . . . . . . 16 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
8988imp 407 . . . . . . . . . . . . . . 15 (((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
9086, 65, 87, 89syl21anc 835 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
91 incom 4135 . . . . . . . . . . . . . . . 16 ((𝑂𝐴) ∩ (𝐴𝑥)) = ((𝐴𝑥) ∩ (𝑂𝐴))
92 inss1 4162 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ⊆ 𝐴
93 disjdif 4405 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ (𝑂𝐴)) = ∅
94 ssdisj 4393 . . . . . . . . . . . . . . . . 17 (((𝐴𝑥) ⊆ 𝐴 ∧ (𝐴 ∩ (𝑂𝐴)) = ∅) → ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅)
9592, 93, 94mp2an 689 . . . . . . . . . . . . . . . 16 ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅
9691, 95eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅
9796a1i 11 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅)
9812, 65, 78, 90, 97unelldsys 32126 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∪ (𝐴𝑥)) ∈ 𝑡)
9958, 64, 98rspcdva 3562 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡)
10056, 99eqeltrd 2839 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)
101100ex 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
102101ralrimiva 3103 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
103 inex1g 5243 . . . . . . . . . . . 12 (𝐴𝐸 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
10445, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
105104adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ V)
106 elintrabg 4892 . . . . . . . . . 10 ((𝐴 ∩ (𝑂𝑥)) ∈ V → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
107105, 106syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
108102, 107mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡})
109108, 23eleqtrrdi 2850 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸)
11032, 109jca 512 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
11128, 110sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
112 ineq2 4140 . . . . . . 7 (𝑏 = (𝑂𝑥) → (𝐴𝑏) = (𝐴 ∩ (𝑂𝑥)))
113112eleq1d 2823 . . . . . 6 (𝑏 = (𝑂𝑥) → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
114113elrab 3624 . . . . 5 ((𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
115111, 114sylibr 233 . . . 4 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
116115ralrimiva 3103 . . 3 (𝜑 → ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
117 ineq2 4140 . . . . . . 7 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴 𝑥))
118117eleq1d 2823 . . . . . 6 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 𝑥) ∈ 𝐸))
1191sspwi 4547 . . . . . . . 8 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂
120 simplr 766 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
121119, 120sselid 3919 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝒫 𝑂)
122121elpwunicl 30894 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑂)
123 uniin2 30892 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = (𝐴 𝑥)
124 vex 3436 . . . . . . . . . . . . . 14 𝑦 ∈ V
125124inex2 5242 . . . . . . . . . . . . 13 (𝐴𝑦) ∈ V
126125dfiun3 5875 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = ran (𝑦𝑥 ↦ (𝐴𝑦))
127123, 126eqtr3i 2768 . . . . . . . . . . 11 (𝐴 𝑥) = ran (𝑦𝑥 ↦ (𝐴𝑦))
128 simplr 766 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
129 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑦(𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
130 nfv 1917 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑥 ≼ ω
131 nfdisj1 5053 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑦𝑥 𝑦
132130, 131nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
133129, 132nfan 1902 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
134 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑦 𝑡𝐿
135133, 134nfan 1902 . . . . . . . . . . . . . . . 16 𝑦(((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿)
136 nfv 1917 . . . . . . . . . . . . . . . 16 𝑦 𝑇𝑡
137135, 136nfan 1902 . . . . . . . . . . . . . . 15 𝑦((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡)
138 elpwi 4542 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
139138ad4antlr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
140139sselda 3921 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
141 ineq2 4140 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑦 → (𝐴𝑏) = (𝐴𝑦))
142141eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑦 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑦) ∈ 𝐸))
143142elrab 3624 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑦 ∈ 𝒫 𝑂 ∧ (𝐴𝑦) ∈ 𝐸))
144143simprbi 497 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → (𝐴𝑦) ∈ 𝐸)
145140, 144syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝐸)
146 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑡𝐿)
147 simplr 766 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑇𝑡)
14823eleq2i 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ 𝐸 ↔ (𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡})
149125elintrab 4891 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
150148, 149bitri 274 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑦) ∈ 𝐸 ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
151 rspa 3132 . . . . . . . . . . . . . . . . . . 19 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
152150, 151sylanb 581 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∈ 𝐸𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
153152imp 407 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑦) ∈ 𝐸𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑦) ∈ 𝑡)
154145, 146, 147, 153syl21anc 835 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝑡)
155154ex 413 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑦𝑥 → (𝐴𝑦) ∈ 𝑡))
156137, 155ralrimi 3141 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡)
157 eqid 2738 . . . . . . . . . . . . . . 15 (𝑦𝑥 ↦ (𝐴𝑦)) = (𝑦𝑥 ↦ (𝐴𝑦))
158157rnmptss 6996 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡 → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
159156, 158syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
160128, 159sselpwd 5250 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
161 simpllr 773 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
162161simpld 495 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ≼ ω)
163 1stcrestlem 22603 . . . . . . . . . . . . 13 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
164162, 163syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
165161simprd 496 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦𝑥 𝑦)
166 disjin2 30926 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦Disj 𝑦𝑥 (𝐴𝑦))
167 disjrnmpt 30924 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 (𝐴𝑦) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
168165, 166, 1673syl 18 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
169 nfmpt1 5182 . . . . . . . . . . . . . . 15 𝑦(𝑦𝑥 ↦ (𝐴𝑦))
170169nfrn 5861 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝑥 ↦ (𝐴𝑦))
171 nfcv 2907 . . . . . . . . . . . . . 14 𝑧𝑦
172 nfcv 2907 . . . . . . . . . . . . . 14 𝑦𝑧
173 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝑧𝑦 = 𝑧)
174170, 171, 172, 173cbvdisjf 30910 . . . . . . . . . . . . 13 (Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
175168, 174sylibr 233 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)
176 breq1 5077 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (𝑧 ≼ ω ↔ ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω))
177172, 170disjeq1f 30912 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦))
178176, 177anbi12d 631 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)))
179 unieq 4850 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → 𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)))
180179eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ( 𝑧𝑡 ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
181178, 180imbi12d 345 . . . . . . . . . . . . . 14 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡) ↔ ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)))
18214simp3d 1143 . . . . . . . . . . . . . . . 16 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
183 breq1 5077 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
184 disjeq1 5046 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
185183, 184anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
186 unieq 4850 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 𝑥 = 𝑧)
187186eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ( 𝑥𝑡 𝑧𝑡))
188185, 187imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡)))
189188cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
190182, 189sylib 217 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
191190adantr 481 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
192 simpr 485 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
193181, 191, 192rspcdva 3562 . . . . . . . . . . . . 13 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
194193imp 407 . . . . . . . . . . . 12 (((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) ∧ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
195128, 160, 164, 175, 194syl22anc 836 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
196127, 195eqeltrid 2843 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 𝑥) ∈ 𝑡)
197196ex 413 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
198197ralrimiva 3103 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
199 vuniex 7592 . . . . . . . . . 10 𝑥 ∈ V
200199inex2 5242 . . . . . . . . 9 (𝐴 𝑥) ∈ V
201200elintrab 4891 . . . . . . . 8 ((𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
202198, 201sylibr 233 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡})
203202, 23eleqtrrdi 2850 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ 𝐸)
204118, 122, 203elrabd 3626 . . . . 5 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
205204ex 413 . . . 4 ((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
206205ralrimiva 3103 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
20725, 116, 2063jca 1127 . 2 (𝜑 → (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})))
20812isldsys 32124 . 2 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿 ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))))
2097, 207, 208sylanbrc 583 1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879   ciun 4924  Disj wdisj 5039   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  ωcom 7712  cdom 8731  ficfi 9169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700
This theorem is referenced by:  ldgenpisyslem2  32132
  Copyright terms: Public domain W3C validator