| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunin2 | Structured version Visualization version GIF version | ||
| Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5007 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| iunin2 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.42v 3164 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 2 | elin 3918 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 3 | 2 | rexbii 3079 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 4 | eliun 4945 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 5 | 4 | anbi2i 623 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 6 | 1, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 7 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
| 8 | elin 3918 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 10 | 9 | eqriv 2728 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3901 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-in 3909 df-iun 4943 |
| This theorem is referenced by: iunin1 5020 2iunin 5024 resiun2 5949 infssuni 9230 kmlem11 10049 cmpsublem 23312 cmpsub 23313 kgentopon 23451 metnrmlem3 24775 ovoliunlem1 25428 voliunlem1 25476 voliunlem2 25477 uniioombllem2 25509 uniioombllem4 25512 volsup2 25531 itg1addlem5 25626 itg1climres 25640 uniin2 32527 carsgclctunlem2 34327 cvmscld 35305 cnambfre 37707 ftc1anclem6 37737 heiborlem3 37852 carageniuncllem2 46559 |
| Copyright terms: Public domain | W3C validator |