Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunin2 | Structured version Visualization version GIF version |
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4967 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
iunin2 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.42v 3263 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | elin 3882 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
3 | 2 | rexbii 3170 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
4 | eliun 4908 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
5 | 4 | anbi2i 626 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
6 | 1, 3, 5 | 3bitr4i 306 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
7 | eliun 4908 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
8 | elin 3882 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
9 | 6, 7, 8 | 3bitr4i 306 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶)) |
10 | 9 | eqriv 2734 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ∩ cin 3865 ∪ ciun 4904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-in 3873 df-iun 4906 |
This theorem is referenced by: iunin1 4980 2iunin 4984 resiun2 5872 infssuni 8967 kmlem11 9774 cmpsublem 22296 cmpsub 22297 kgentopon 22435 metnrmlem3 23758 ovoliunlem1 24399 voliunlem1 24447 voliunlem2 24448 uniioombllem2 24480 uniioombllem4 24483 volsup2 24502 itg1addlem5 24598 itg1climres 24612 uniin2 30611 carsgclctunlem2 31998 cvmscld 32948 cnambfre 35562 ftc1anclem6 35592 heiborlem3 35708 carageniuncllem2 43735 |
Copyright terms: Public domain | W3C validator |