| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunin2 | Structured version Visualization version GIF version | ||
| Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5010 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| iunin2 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.42v 3161 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 2 | elin 3921 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 3 | 2 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 4 | eliun 4948 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 5 | 4 | anbi2i 623 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 6 | 1, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 7 | eliun 4948 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∩ 𝐶)) | |
| 8 | elin 3921 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) ↔ 𝑦 ∈ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 10 | 9 | eqriv 2726 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 ∪ ciun 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3440 df-in 3912 df-iun 4946 |
| This theorem is referenced by: iunin1 5024 2iunin 5028 resiun2 5955 infssuni 9255 kmlem11 10074 cmpsublem 23302 cmpsub 23303 kgentopon 23441 metnrmlem3 24766 ovoliunlem1 25419 voliunlem1 25467 voliunlem2 25468 uniioombllem2 25500 uniioombllem4 25503 volsup2 25522 itg1addlem5 25617 itg1climres 25631 uniin2 32514 carsgclctunlem2 34286 cvmscld 35245 cnambfre 37647 ftc1anclem6 37677 heiborlem3 37792 carageniuncllem2 46504 |
| Copyright terms: Public domain | W3C validator |