MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin2 Structured version   Visualization version   GIF version

Theorem iunin2 5023
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5010 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.42v 3161 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
2 elin 3921 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 3076 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 4948 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
54anbi2i 623 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
61, 3, 53bitr4i 303 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
7 eliun 4948 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
8 elin 3921 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
96, 7, 83bitr4i 303 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
109eqriv 2726 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3904   ciun 4944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3440  df-in 3912  df-iun 4946
This theorem is referenced by:  iunin1  5024  2iunin  5028  resiun2  5955  infssuni  9255  kmlem11  10074  cmpsublem  23302  cmpsub  23303  kgentopon  23441  metnrmlem3  24766  ovoliunlem1  25419  voliunlem1  25467  voliunlem2  25468  uniioombllem2  25500  uniioombllem4  25503  volsup2  25522  itg1addlem5  25617  itg1climres  25631  uniin2  32514  carsgclctunlem2  34286  cvmscld  35245  cnambfre  37647  ftc1anclem6  37677  heiborlem3  37792  carageniuncllem2  46504
  Copyright terms: Public domain W3C validator