Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssralv | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3893 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
3 | 2 | ralimdv2 3099 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: ss2ralv 3969 intss 4880 iinss1 4919 disjiun 5040 poss 5470 sess2 5520 isores3 7144 isoini2 7148 smores 8089 smores2 8091 tfrlem5 8116 resixp 8614 ac6sfi 8915 iunfi 8964 ixpfi2 8974 marypha1lem 9049 ordtypelem2 9135 tcrank 9500 acndom 9665 pwsdompw 9818 ssfin3ds 9944 fin1a2s 10028 hsmexlem4 10043 domtriomlem 10056 zornn0g 10119 fpwwe2lem12 10256 ingru 10429 cshw1 14387 rexanuz 14909 cau3lem 14918 caubnd 14922 limsupgord 15033 limsupval2 15041 rlimres 15119 lo1res 15120 o1of2 15174 o1rlimmul 15180 climsup 15233 fsumiun 15385 lcmfunsnlem1 16194 coprmprod 16218 pcfac 16452 vdwnnlem2 16549 firest 16937 imasaddfnlem 17033 imasvscafn 17042 psss 18086 tsrss 18095 cntz2ss 18727 cntzmhm2 18734 subgpgp 18986 efgsres 19128 telgsumfzs 19374 telgsums 19378 dprdss 19416 acsfn1p 19843 ocv2ss 20635 mretopd 21989 tgcn 22149 tgcnp 22150 subbascn 22151 cnss2 22174 cncnp 22177 sslm 22196 t1ficld 22224 tgcmp 22298 1stcfb 22342 islly2 22381 dislly 22394 comppfsc 22429 ptbasfi 22478 ptcnplem 22518 tx1stc 22547 qtoptop2 22596 fbunfip 22766 flftg 22893 txflf 22903 fclsbas 22918 fclsss1 22919 fclsss2 22920 alexsubb 22943 tmdgsum2 22993 metrest 23422 rescncf 23794 cnllycmp 23853 bndth 23855 fgcfil 24168 ivthlem2 24349 ivthlem3 24350 ovolsslem 24381 ovolfiniun 24398 finiunmbl 24441 volfiniun 24444 iunmbl 24450 ioombl1lem4 24458 dyadmax 24495 vitali 24510 mbfimaopnlem 24552 mbflimsup 24563 mbfi1flim 24621 ditgeq3 24747 dvferm 24885 rollelem 24886 dvivthlem1 24905 itgsubstlem 24945 aalioulem2 25226 ulmcaulem 25286 ulmss 25289 xrlimcnp 25851 2sqreunnlem2 26336 pntlem3 26490 pntlemp 26491 pntleml 26492 uspgr2wlkeq 27733 redwlk 27760 wwlksm1edg 27965 wwlksnred 27976 clwlkclwwlklem2 28083 clwwlkinwwlk 28123 clwwlkf 28130 wwlksubclwwlk 28141 occon 29368 xrge0infss 30803 resspos 30963 resstos 30964 gsummptres2 31032 submarchi 31159 prmidl2 31330 sigaclci 31812 measiun 31898 elmbfmvol2 31946 sibfof 32019 ftc2re 32290 bnj1118 32677 subfacp1lem3 32857 iccllysconn 32925 dmopab3rexdif 33080 untint 33366 untangtr 33368 dfon2lem6 33483 dfon2lem8 33485 dfon2lem9 33486 xpord2ind 33531 xpord3ind 33537 poseq 33539 soseq 33540 naddssim 33574 nosepon 33605 noresle 33637 sssslt1 33726 sssslt2 33727 neibastop1 34285 neibastop2lem 34286 neibastop3 34288 finixpnum 35499 ptrecube 35514 poimirlem26 35540 poimirlem27 35541 poimirlem30 35544 heicant 35549 volsupnfl 35559 prdstotbnd 35689 heibor1lem 35704 ispridl2 35933 elrfirn2 40221 rabdiophlem1 40326 dford3lem1 40551 kelac1 40591 ssralv2 41824 ssralv2VD 42159 climinf 42822 limsupvaluz2 42954 supcnvlimsup 42956 iccpartres 44543 |
Copyright terms: Public domain | W3C validator |