Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssralv | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
3 | 2 | ralimdv2 3101 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ss2ralv 3985 intss 4897 iinss1 4936 disjiun 5057 poss 5496 sess2 5549 isores3 7186 isoini2 7190 smores 8154 smores2 8156 tfrlem5 8182 resixp 8679 ac6sfi 8988 iunfi 9037 ixpfi2 9047 marypha1lem 9122 ordtypelem2 9208 tcrank 9573 acndom 9738 pwsdompw 9891 ssfin3ds 10017 fin1a2s 10101 hsmexlem4 10116 domtriomlem 10129 zornn0g 10192 fpwwe2lem12 10329 ingru 10502 cshw1 14463 rexanuz 14985 cau3lem 14994 caubnd 14998 limsupgord 15109 limsupval2 15117 rlimres 15195 lo1res 15196 o1of2 15250 o1rlimmul 15256 climsup 15309 fsumiun 15461 lcmfunsnlem1 16270 coprmprod 16294 pcfac 16528 vdwnnlem2 16625 firest 17060 imasaddfnlem 17156 imasvscafn 17165 psss 18213 tsrss 18222 cntz2ss 18854 cntzmhm2 18861 subgpgp 19117 efgsres 19259 telgsumfzs 19505 telgsums 19509 dprdss 19547 acsfn1p 19982 ocv2ss 20790 mretopd 22151 tgcn 22311 tgcnp 22312 subbascn 22313 cnss2 22336 cncnp 22339 sslm 22358 t1ficld 22386 tgcmp 22460 1stcfb 22504 islly2 22543 dislly 22556 comppfsc 22591 ptbasfi 22640 ptcnplem 22680 tx1stc 22709 qtoptop2 22758 fbunfip 22928 flftg 23055 txflf 23065 fclsbas 23080 fclsss1 23081 fclsss2 23082 alexsubb 23105 tmdgsum2 23155 metrest 23586 rescncf 23966 cnllycmp 24025 bndth 24027 fgcfil 24340 ivthlem2 24521 ivthlem3 24522 ovolsslem 24553 ovolfiniun 24570 finiunmbl 24613 volfiniun 24616 iunmbl 24622 ioombl1lem4 24630 dyadmax 24667 vitali 24682 mbfimaopnlem 24724 mbflimsup 24735 mbfi1flim 24793 ditgeq3 24919 dvferm 25057 rollelem 25058 dvivthlem1 25077 itgsubstlem 25117 aalioulem2 25398 ulmcaulem 25458 ulmss 25461 xrlimcnp 26023 2sqreunnlem2 26508 pntlem3 26662 pntlemp 26663 pntleml 26664 uspgr2wlkeq 27915 redwlk 27942 wwlksm1edg 28147 wwlksnred 28158 clwlkclwwlklem2 28265 clwwlkinwwlk 28305 clwwlkf 28312 wwlksubclwwlk 28323 occon 29550 xrge0infss 30985 resspos 31146 resstos 31147 gsummptres2 31215 submarchi 31342 prmidl2 31518 sigaclci 32000 measiun 32086 elmbfmvol2 32134 sibfof 32207 ftc2re 32478 bnj1118 32864 subfacp1lem3 33044 iccllysconn 33112 dmopab3rexdif 33267 untint 33553 untangtr 33555 dfon2lem6 33670 dfon2lem8 33672 dfon2lem9 33673 ttrclselem2 33712 xpord2ind 33721 xpord3ind 33727 poseq 33729 soseq 33730 naddssim 33764 nosepon 33795 noresle 33827 sssslt1 33916 sssslt2 33917 neibastop1 34475 neibastop2lem 34476 neibastop3 34478 finixpnum 35689 ptrecube 35704 poimirlem26 35730 poimirlem27 35731 poimirlem30 35734 heicant 35739 volsupnfl 35749 prdstotbnd 35879 heibor1lem 35894 ispridl2 36123 elrfirn2 40434 rabdiophlem1 40539 dford3lem1 40764 kelac1 40804 ssralv2 42040 ssralv2VD 42375 climinf 43037 limsupvaluz2 43169 supcnvlimsup 43171 iccpartres 44758 |
Copyright terms: Public domain | W3C validator |