| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssralv | Structured version Visualization version GIF version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3968 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | imim1 83 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 3 | 2 | al2imi 1815 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
| 4 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 5 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
| Copyright terms: Public domain | W3C validator |