Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssralv | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
Ref | Expression |
---|---|
ssralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | imim1d 82 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜑))) |
3 | 2 | ralimdv2 3107 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ss2ralv 3989 intss 4900 iinss1 4939 disjiun 5061 poss 5505 sess2 5558 isores3 7206 isoini2 7210 smores 8183 smores2 8185 tfrlem5 8211 resixp 8721 ac6sfi 9058 iunfi 9107 ixpfi2 9117 marypha1lem 9192 ordtypelem2 9278 ttrclselem2 9484 tcrank 9642 acndom 9807 pwsdompw 9960 ssfin3ds 10086 fin1a2s 10170 hsmexlem4 10185 domtriomlem 10198 zornn0g 10261 fpwwe2lem12 10398 ingru 10571 cshw1 14535 rexanuz 15057 cau3lem 15066 caubnd 15070 limsupgord 15181 limsupval2 15189 rlimres 15267 lo1res 15268 o1of2 15322 o1rlimmul 15328 climsup 15381 fsumiun 15533 lcmfunsnlem1 16342 coprmprod 16366 pcfac 16600 vdwnnlem2 16697 firest 17143 imasaddfnlem 17239 imasvscafn 17248 psss 18298 tsrss 18307 cntz2ss 18939 cntzmhm2 18946 subgpgp 19202 efgsres 19344 telgsumfzs 19590 telgsums 19594 dprdss 19632 acsfn1p 20067 ocv2ss 20878 mretopd 22243 tgcn 22403 tgcnp 22404 subbascn 22405 cnss2 22428 cncnp 22431 sslm 22450 t1ficld 22478 tgcmp 22552 1stcfb 22596 islly2 22635 dislly 22648 comppfsc 22683 ptbasfi 22732 ptcnplem 22772 tx1stc 22801 qtoptop2 22850 fbunfip 23020 flftg 23147 txflf 23157 fclsbas 23172 fclsss1 23173 fclsss2 23174 alexsubb 23197 tmdgsum2 23247 metrest 23680 rescncf 24060 cnllycmp 24119 bndth 24121 fgcfil 24435 ivthlem2 24616 ivthlem3 24617 ovolsslem 24648 ovolfiniun 24665 finiunmbl 24708 volfiniun 24711 iunmbl 24717 ioombl1lem4 24725 dyadmax 24762 vitali 24777 mbfimaopnlem 24819 mbflimsup 24830 mbfi1flim 24888 ditgeq3 25014 dvferm 25152 rollelem 25153 dvivthlem1 25172 itgsubstlem 25212 aalioulem2 25493 ulmcaulem 25553 ulmss 25556 xrlimcnp 26118 2sqreunnlem2 26603 pntlem3 26757 pntlemp 26758 pntleml 26759 uspgr2wlkeq 28013 redwlk 28040 wwlksm1edg 28246 wwlksnred 28257 clwlkclwwlklem2 28364 clwwlkinwwlk 28404 clwwlkf 28411 wwlksubclwwlk 28422 occon 29649 xrge0infss 31083 resspos 31244 resstos 31245 gsummptres2 31313 submarchi 31440 prmidl2 31616 sigaclci 32100 measiun 32186 elmbfmvol2 32234 sibfof 32307 ftc2re 32578 bnj1118 32964 subfacp1lem3 33144 iccllysconn 33212 dmopab3rexdif 33367 untint 33653 untangtr 33655 dfon2lem6 33764 dfon2lem8 33766 dfon2lem9 33767 xpord2ind 33794 xpord3ind 33800 poseq 33802 soseq 33803 naddssim 33837 nosepon 33868 noresle 33900 sssslt1 33989 sssslt2 33990 neibastop1 34548 neibastop2lem 34549 neibastop3 34551 finixpnum 35762 ptrecube 35777 poimirlem26 35803 poimirlem27 35804 poimirlem30 35807 heicant 35812 volsupnfl 35822 prdstotbnd 35952 heibor1lem 35967 ispridl2 36196 elrfirn2 40518 rabdiophlem1 40623 dford3lem1 40848 kelac1 40888 ssralv2 42151 ssralv2VD 42486 climinf 43147 limsupvaluz2 43279 supcnvlimsup 43281 iccpartres 44870 |
Copyright terms: Public domain | W3C validator |