Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  efrunt Structured version   Visualization version   GIF version

Theorem efrunt 35703
Description: If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
Assertion
Ref Expression
efrunt ( E Fr 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem efrunt
StepHypRef Expression
1 frirr 5589 . . 3 (( E Fr 𝐴𝑥𝐴) → ¬ 𝑥 E 𝑥)
2 epel 5516 . . 3 (𝑥 E 𝑥𝑥𝑥)
31, 2sylnib 328 . 2 (( E Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑥)
43ralrimiva 3121 1 ( E Fr 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044   class class class wbr 5088   E cep 5512   Fr wfr 5563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pr 5367
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3393  df-v 3435  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5089  df-opab 5151  df-eprel 5513  df-fr 5566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator