![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > efrunt | Structured version Visualization version GIF version |
Description: If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
Ref | Expression |
---|---|
efrunt | ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirr 5427 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 E 𝑥) | |
2 | epel 5364 | . . 3 ⊢ (𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥) | |
3 | 1, 2 | sylnib 329 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝑥) |
4 | 3 | ralrimiva 3151 | 1 ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2083 ∀wral 3107 class class class wbr 4968 E cep 5359 Fr wfr 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-eprel 5360 df-fr 5409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |