| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > efrunt | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| Ref | Expression |
|---|---|
| efrunt | ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frirr 5595 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 E 𝑥) | |
| 2 | epel 5522 | . . 3 ⊢ (𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥) | |
| 3 | 1, 2 | sylnib 328 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝑥) |
| 4 | 3 | ralrimiva 3124 | 1 ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 class class class wbr 5093 E cep 5518 Fr wfr 5569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 df-fr 5572 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |