Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  efrunt Structured version   Visualization version   GIF version

Theorem efrunt 33554
Description: If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.)
Assertion
Ref Expression
efrunt ( E Fr 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem efrunt
StepHypRef Expression
1 frirr 5557 . . 3 (( E Fr 𝐴𝑥𝐴) → ¬ 𝑥 E 𝑥)
2 epel 5489 . . 3 (𝑥 E 𝑥𝑥𝑥)
31, 2sylnib 327 . 2 (( E Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑥)
43ralrimiva 3107 1 ( E Fr 𝐴 → ∀𝑥𝐴 ¬ 𝑥𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3063   class class class wbr 5070   E cep 5485   Fr wfr 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator