| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > efrunt | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| Ref | Expression |
|---|---|
| efrunt | ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frirr 5589 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 E 𝑥) | |
| 2 | epel 5516 | . . 3 ⊢ (𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥) | |
| 3 | 1, 2 | sylnib 328 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ 𝑥) |
| 4 | 3 | ralrimiva 3121 | 1 ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 class class class wbr 5088 E cep 5512 Fr wfr 5563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pr 5367 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5089 df-opab 5151 df-eprel 5513 df-fr 5566 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |