Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for upgr1wlkd 28412. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
Ref | Expression |
---|---|
upgr1wlkdlem2 | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1wlkd.j | . 2 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
2 | ssid 3939 | . . 3 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌} | |
3 | sseq2 3943 | . . . 4 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) | |
4 | 3 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) |
5 | 2, 4 | mpbiri 257 | . 2 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
6 | 1, 5 | mpidan 685 | 1 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 {cpr 4560 ‘cfv 6418 〈“cs1 14228 〈“cs2 14482 Vtxcvtx 27269 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: upgr1wlkd 28412 upgr1trld 28413 upgr1pthd 28414 upgr1pthond 28415 |
Copyright terms: Public domain | W3C validator |