| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgr1wlkd 30133. (Contributed by AV, 22-Jan-2021.) |
| Ref | Expression |
|---|---|
| upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
| upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
| upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
| upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
| Ref | Expression |
|---|---|
| upgr1wlkdlem2 | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.j | . 2 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
| 2 | ssid 3986 | . . 3 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌} | |
| 3 | sseq2 3990 | . . . 4 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) |
| 5 | 2, 4 | mpbiri 258 | . 2 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
| 6 | 1, 5 | mpidan 689 | 1 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 {cpr 4608 ‘cfv 6536 〈“cs1 14618 〈“cs2 14865 Vtxcvtx 28980 iEdgciedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 |
| This theorem is referenced by: upgr1wlkd 30133 upgr1trld 30134 upgr1pthd 30135 upgr1pthond 30136 |
| Copyright terms: Public domain | W3C validator |