MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem2 Structured version   Visualization version   GIF version

Theorem upgr1wlkdlem2 28044
Description: Lemma 2 for upgr1wlkd 28045. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
Assertion
Ref Expression
upgr1wlkdlem2 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))

Proof of Theorem upgr1wlkdlem2
StepHypRef Expression
1 upgr1wlkd.j . 2 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
2 ssid 3916 . . 3 {𝑋, 𝑌} ⊆ {𝑋, 𝑌}
3 sseq2 3920 . . . 4 (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌}))
43adantl 485 . . 3 (((𝜑𝑋𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌}))
52, 4mpbiri 261 . 2 (((𝜑𝑋𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))
61, 5mpidan 688 1 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  wss 3860  {cpr 4527  cfv 6340  ⟨“cs1 14009  ⟨“cs2 14263  Vtxcvtx 26902  iEdgciedg 26903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-in 3867  df-ss 3877
This theorem is referenced by:  upgr1wlkd  28045  upgr1trld  28046  upgr1pthd  28047  upgr1pthond  28048
  Copyright terms: Public domain W3C validator