|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for upgr1wlkd 30167. (Contributed by AV, 22-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 | 
| upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 | 
| upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) | 
| upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) | 
| upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | 
| Ref | Expression | 
|---|---|
| upgr1wlkdlem2 | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | upgr1wlkd.j | . 2 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
| 2 | ssid 4005 | . . 3 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌} | |
| 3 | sseq2 4009 | . . . 4 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌})) | 
| 5 | 2, 4 | mpbiri 258 | . 2 ⊢ (((𝜑 ∧ 𝑋 ≠ 𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | 
| 6 | 1, 5 | mpidan 689 | 1 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3950 {cpr 4627 ‘cfv 6560 〈“cs1 14634 〈“cs2 14881 Vtxcvtx 29014 iEdgciedg 29015 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ss 3967 | 
| This theorem is referenced by: upgr1wlkd 30167 upgr1trld 30168 upgr1pthd 30169 upgr1pthond 30170 | 
| Copyright terms: Public domain | W3C validator |