MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem2 Structured version   Visualization version   GIF version

Theorem upgr1wlkdlem2 30166
Description: Lemma 2 for upgr1wlkd 30167. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
Assertion
Ref Expression
upgr1wlkdlem2 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))

Proof of Theorem upgr1wlkdlem2
StepHypRef Expression
1 upgr1wlkd.j . 2 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
2 ssid 4005 . . 3 {𝑋, 𝑌} ⊆ {𝑋, 𝑌}
3 sseq2 4009 . . . 4 (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌}))
43adantl 481 . . 3 (((𝜑𝑋𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → ({𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽) ↔ {𝑋, 𝑌} ⊆ {𝑋, 𝑌}))
52, 4mpbiri 258 . 2 (((𝜑𝑋𝑌) ∧ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))
61, 5mpidan 689 1 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wss 3950  {cpr 4627  cfv 6560  ⟨“cs1 14634  ⟨“cs2 14881  Vtxcvtx 29014  iEdgciedg 29015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2728  df-ss 3967
This theorem is referenced by:  upgr1wlkd  30167  upgr1trld  30168  upgr1pthd  30169  upgr1pthond  30170
  Copyright terms: Public domain W3C validator